

COMPARISON OF HEAT TRANSFER AND SOIL IMPACTS BETWEEN AIR CURTAIN BURNER BURNING OR SLASH PILE BURN

Waste to Wisdom: Subtask 4.6.8

Prepared By:

Woongsoon Jang¹, Deborah S. Page-Dumroese², and Han-Sup Han³

¹ Department of Forestry and Wildland Resources, Humboldt State University, Arcata, CA 95521, USA; woongsoon.jang@gmail.com

² USDA Forest Service, Rocky Mountain Research Station, 1221 South Main, Moscow, ID 83843, USA; ddumroese@fs.fed.us

³ Department of Forestry and Wildland Resources, Humboldt State University, Arcata, CA 95521, USA; hh30@humboldt.edu

Corresponding author: Woongsoon Jang email: woongsoon.jang@gmail.com Phone: +1-707-826-3725

This material is based upon work supported by a grant from the U.S. Department of Energy under the Biomass Research and Development Initiative program: Award Number DE-EE0006297.

This Page Blank

COMPARISON OF HEAT TRANSFER AND SOIL IMPACTS BETWEEN AIR CURTAIN BURNER BURNING OR SLASH PILE BURN

Woongsoon Jang, Deborah S. Page-Dumroese, and Han-Sup Han

ABSTRACT

We measured soil heating and subsequent changes in soil properties between two forest residue disposal methods; slash-pile burning (SPB) and air curtain burner (ACB). The ACB consumes inside fuels more efficiently and safely via blowing air into a burning container. Five burning trials with different fuel sizes were implemented in northern California, USA. Soil temperature was measured at 1, 2, 3, 4, 6, and 8 cm depth. Immediate after burning trials, soil samples from two depths (0-10 and 10-20 cm) and ash samples were collected for analyzing organic matter, carbon and nitrogen content, and calcium, magnesium, and potassium concentrations. The highest temperature observed was 389 °C at 1 cm depth under the SPB. Mean peak temperatures were 133.2°C and 162.2°C for ACB and SPB, respectively. However, there were no significant differences in peak temperatures and duration of lethal soil temperatures (total minutes over 60°C) between ACB and SPB. Heat transfer decreased rapidly as the soil depth increased. There is little evidence that any subsequent changes in soil chemical properties occurred, concluding that these small-scale burns had few negative impacts at our study site. Therefore, given the lack of extreme soil heating and more efficient and safer woody residue reduction, the ACB may be more effective than open SPB; especially where fire escape or long-term fire damage to soils are of concern.

Keywords: Forest residue management; Woody biomass utilization; Soil temperature profile; Soil productivity; Thermocouple

This Page Blank

COMPARISON OF HEAT TRANSFER AND SOIL IMPACTS BETWEEN AIR CURTAIN BURNER BURNING OR SLASH PILE BURN

Woongsoon Jang, Deborah S. Page-Dumroese, and Han-Sup Han

ABSTRACT

We measured soil heating and subsequent changes in soil properties between two forest residue disposal methods; slash-pile burning (SPB) and air curtain burner (ACB). The ACB consumes inside fuels more efficiently and safely via blowing air into a burning container. Five burning trials with different fuel sizes were implemented in northern California, USA. Soil temperature was measured at 1, 2, 3, 4, 6, and 8 cm depth. Immediate after burning trials, soil samples from two depths (0-10 and 10-20 cm) and ash samples were collected for analyzing organic matter, carbon and nitrogen content, and calcium, magnesium, and potassium concentrations. The highest temperature observed was 389 °C at 1 cm depth under the SPB. Mean peak temperatures were 133.2°C and 162.2°C for ACB and SPB, respectively. However, there were no significant differences in peak temperatures and duration of lethal soil temperatures (total minutes over 60°C) between ACB and SPB. Heat transfer decreased rapidly as the soil depth increased. There is little evidence that any subsequent changes in soil chemical properties occurred, concluding that these small-scale burns had few negative impacts at our study site. Therefore, given the lack of extreme soil heating and more efficient and safer woody residue reduction, the ACB may be more effective than open SPB; especially where fire escape or long-term fire damage to soils are of concern.

Keywords: Forest residue management; Woody biomass utilization; Soil temperature profile; Soil productivity; Thermocouple

1. INTRODUCTION

Fire suppression and drought have led to a significant amount of land that must be treated to reduce wildfire risk [1], particularly in California, USA. There are many ecological benefits of forest residue disposal through burning [2, 3], but selecting the most appropriate method is important for sustainable forest management [4]. Currently, piling residues is the preferred method for disposal of woody residues among land managers. As an effective fuel reduction tool, slash-pile burning (SPB) has been widely used in western USA forests as one method to reduce fire risk and extreme fire behavior [3, 5]. Large amounts of woody residues can be generated by thinning or removing dead trees and residue disposal can be a nuisance for land managers [6]. Pile burning has been preferred since it is relatively inexpensive and can usually be conducted in a controlled manner [7]. It also allows land managers to burn fuels safely under various weather conditions if correctly implemented [8]. Thus, SPB has often been selected as the most economically feasible option for disposing forest residues, especially at the wildland-urban interface or areas without local bioenergy facilities [3].

However, SPB also has limitations and challenges: Piling and burning has been shown to alter soil chemical and physical properties such as clay mineralogy [9], loss of organic matter [10], and changes in base cation concentration [9, 11]. In addition, building piles can cause considerable soil disturbances such as compaction, displacement, or rutting depending on the time of year when piles are created [12, 13]. Unburned piles can be an ideal breeding area for pine engraver (*Ips pini*), thereby potentially increasing insect attack of surrounding live trees [4, 14]. Although pile burning can be conducted under a wide range of weather conditions, low-fire risk days (e.g. days with low wind speed, cool temperature, and high humidity) are commonly recommended [7]. One of the most significant drawbacks of SPB is that it emits considerable smoke containing various air pollutants such as particular matter, CO, NOx, and volatile organic compounds [5]. As a result, burning could be restricted in areas near the public where emissions could negatively impact air quality [15].

An alternative method to dispose forest residues after harvesting is the air curtain burner (ACB; also known as air curtain destructor/incinerator; Figure 1(a)). ACBs are the metal boxes (size: 5-53 m³) with a high velocity air curtain blown across the top of the residue (see [16] for a description of the ACB). It minimizes many of the limitations of SPB. For example, it has a higher combustion efficiency; thereby burning residues faster (Table 1). Compared to pile burning, it produces fewer air emissions [17]. Moreover, it can reduce the risk of spreading fire, insect breeding in unburned piles, and burning can occur under a wider range of weather condition [16]. Thus, the ACB could provide an environmentally acceptable or technically feasible (i.e., safe) method of woody residue management, but the impacts on soil chemical properties under it are largely unknown.

FIGURE 1. (A) AIR CURTAIN BURNER WITH EMBER CASE AND (B) SLASH-PILE BURNING (PHOTO CREDIT: H. HAN).

		Grovela	nd site				Volca	no site			
-	Small ¹	/fresh	Mixed ² /	/fresh	Mixed	/cured	Small	/fresh	Mixed	l/fresh	
-	ACB	SPB	ACB	SPB	ACB	SPB	ACB	SPB	ACB	SPB	
Air temp (°C)	23.	.8	20.	1	30	0.2	24	.4	19	9.4	
Relative Humidity (%)) 38.1 59.2		2	35.8		28.7		37.8			
Wind speed (km/h)	1.3	8	1.5	5	0.	0.3		0.8		0.5	
Soil moisture (%)	13.7	18.1	17.0	16.2	9.6	8.7	6.7	7.4	9.2	9.5	
Avg. Fuel size (diameter; cm)	5.1	4.9	18.9	17.2	15.7	14.2	6.0	6.1	15.8	17.0	
Fuel moisture contents (%)	26.0	32.8	27.4	28.5	17	.0	19	0.0	36	5.0	
Fuel consumption ³ (ton)	2.43	1.42	1.36	1.00	0.66	0.46	0.84	0.37	0.92	0.51	
Max. temperature ⁴ (°C)	1005	897	984	953	1026	1081	1080	1010	1055	1010	
Total burning time (hr)	5.55	5.14	4.26	3.57	2.97	2.97	1.98	2.15	2.91	3.80	

Table 1. Description of climatic and fuel conditions for slash-pile burning (SPB) and air curtain burner (ACB).

• ¹ Small size fuel: <10.2 cm in diameter

• ² Mixed size fuel: small size + large size (≥10.2 cm in diameter) fuel

• ³ Green ton

• ⁴ Maximum temperature of combustion zone

Due to its higher burning efficiency, there could be a greater amount of heat released from the ACB as compared to SPB, leading to adverse impacts on soil properties. Heat produced in the ACB box can be transferred into the underlying forest floor and mineral soil by heat transfer processes such as radiation, convection, conduction, vaporization, and condensation [18]; thereby changing soil physical, chemical, and biological properties. However, the spatial scale of impact may be less with an ACB than SPB because one location is used for several burns rather than numerous slash piles within one site.

In general, during woody residue burning temperatures that reach ca. 60-80°C kill seeds, roots, and other plant tissue; even when the burn is for a short duration [19-21]. Soil temperatures reaching 100°C can be lethal to the soil microbes [22] and temperatures ranging from 200-500°C cause reductions of soil carbon (C) and nitrogen (N), aggregate stability, and thermal conductivity [20]. While numerous studies have documented soil temperature flux during slash pile burning (e.g., [23, 24]), we could find no information on soil heating while using ACB. We hypothesize that temperatures could be much higher since larger volumes of wood can be burned at once and the high turbulence associated with air movement across the burning wood can increase the chamber temperature to \geq 980°C. However, although the impacts of burning on belowground processes is highly variable [25], lack of *in-situ* heat transfer measurements hinders the evaluation of heating damage from ACB and perhaps, an increased use in areas with excess woody residues.

Wood ash is a byproduct of woody residue management created during burns. There has been some interest in using wood ash as a soil amendment [26]. Indeed, wood ash can return nutrients such as phosphorus (P), potassium (K), magnesium (Mg) or calcium (Ca) to the soil [27] and salts in wood ash can act as a fertilizer when dissolved in the soil solution [26]. However, in large quantities wood ash can significantly increase soil pH [28] resulting in changes in fungal populations and subsequent impacts on decomposition [29-31]. However, ash nutrient contents can be variable, depending on the burn temperature, since nutrient volatilization occurs at different temperatures [32]. Thus, we expect change

in soil nutrients, organic matter (OM), or C under an ACB might be different from those under SPB and an investigation of wood ash properties is necessary to evaluate using wood ash as a soil amendment. Therefore, the objectives of this study were to investigate 1) heat pulse into the mineral soil from an ACB and SPB and 2) their effects on underlying soil properties. This study focused on disposal of forest residues resulting from thinning treatments around residential areas and city parks. For this, we tested the following hypotheses:

1. The ACB will produce a greater heat pulse and subsequently higher soil temperature profile within the mineral soil profile than SPB.

2. A greater heat pulse associated with ACB will cause larger changes in soil chemical properties as compared to SPB.

3. If the heat pulse between ACB and SPB is significant, then properties of wood ash generated by ACB would differ from those of SPB.

2. Methods

2.1. Study Sites & Burning Description

The first burning trial was conducted in the Pine Mountain Lake Association Compost Area (hereafter "Groveland") and was located is located approximately 5 km north of Groveland, California ($37^{\circ}51'52$ "N, $120^{\circ}12'33$ "W). At Groveland, two kinds of fuel types were tested per burning method; small (<10.2 cm in diameter) and mixed sizes (including both large (≥ 10.2 cm in diameter) and small fuel) on March 26th and 27th 2017, respectively (Table 1). Fuel was from nearby landscaping and fuel treatment wastes and consisted of a mix of conifer species. On average, 1.93 and 1.18 ton (green) of fuels were consumed in small and mixed size burning trials. One gallon of diesel was used as a fire starter in

each batch run in the ACB and SPB. Mixed size slash piles were constructed with an excavator and were 1.2 m in diameter and height. Slash piles from the small fuels were constructed by hand to a size similar to the excavator piles. Fuel remaining after initial SPB piling and ACB loading were manually added to the piles or ACB continuously as fuel was consumed. Both SPB and ACB were tested simultaneously. The average burning time of small-size fuel burning was 5.34 hour, whereas 3.92 hour for mixed-size fuel burning. Maximum temperatures of flame (measured by the ThermaCAM® SC640 IR camera (FLIR Systems, North Billerica, Massachusetts, USA) in 10-minute intervals) of each burning method were 1005°C (ACB) and 897°C (SPB) for small fuel, whereas 984°C (ACB) and 953°C (SPB) were for mixed size fuel. On the days we burned, air temperature was 23.8°C (small fuel), 20.1°C (mixed fuel), and relative humidity was 38.1% (small fuel) and 59.2% (mixed fuel). Soil series at Groveland was a Trabuco and is classified as fine, mixed, superactive thermic Mollic Haploxeralf and has a loamy texture [33].

A second study site was near the Indian Grinding Rock State Historic Park campground (38°25'17"N, 120°38'39"W) and was located 3.2 km south of Volcano, California (hereafter "Volcano"). Three kinds of fuel types were tested during June 13th-15th, 2016; 1) cured mixed size fuel (mixture of small (<10.2 cm in diameter) and large size (≥10.2 cm in diameter) fuel), 2) (fresh) small fuel (<10.2 cm in diameter), and 3) fresh mixed size fuel (mixture of small and large size fuel). Residues for this study came from nearby ponderosa pine (Pinus ponderosa Lawson & C. Lawson) stands in the Park. Cured fuels were 1yr old air-dried residues created in a fuel reduction thinning. Fresh residues were drought/insect damaged or recently killed standing trees. Overall, the average of 0.66 (green) ton of fuel were burned during 2.97 hours per burning trial. Measured maximum temperatures of flame for mixed size cured fuel trial were 1026°C (ACB) and 1081°C (SPB). For small size fresh fuel trial, 1080°C (ACB) and 1010°C (SPB) were the maximum flame temperature. The maximum flame temperature for mixed

size fresh fuel trial were 1055°C (ACB) and 1010°C (SPB). Air temperatures were 30.2°C, 24.4°C, and 19.4°C, and relative humidity was 35.8%, 28.7%, and 37.8% for mixed size cured, small size fresh, and mixed size fresh fuel burning trials, respectively. Soil series at Volcano was a Mariposa soil series; fine- loamy, mixed semiactive, mesic Typic Haploxerult and has a gravelly silt loam texture [33]. The BurnBoss® air curtain burner (Air Burners, Inc., Palm City, Florida, USA) was used. The BurnBoss® is trailer-mounted, containing the FireBox® (combustion chamber) with 10.1 cm thick steel walls filled with thermo-ceramic materials. The bottom of FireBox® is open to the ground (i.e. bottomless), and has 3.7 m × 1.2 m × 1.2 m dimensions (L × W × H). At Volcano, we used the BurnBoss® with the ember case attached because of a high fire risk for escaping. Burning trials were conducted for a maximum 5.55 hours (Groveland day 1), but we left the fire burning until the next morning to ensure complete the combustion of all material. After completion of each burning trial (both ACB and SPB), the next burning trials were conducted in different locations.

2.2. Soil and Ash Sampling

Three sampling points were assigned for each burning method. Under the ACB we sampled in the center, and along the long- and short-edges. Under the SPB we sampled at the center, along the edge, and half-way between the center and edge of the pile (hereafter, "midpoint"). Before and one day after each burning trial, soil samples were taken at two depths (0-10 cm, 10-20 cm) at each sample point location using a slide hammer and soil core (185 cm³ volume) for soil property analyses. After burning, ash samples were taken from the same locations as the soil samples. Samples were sealed in the zip-type

plastic bags, kept cool until shipping, and sent to Rocky Mountain Research Station (RMRS; Moscow, Idaho) for processing and lab analyses.

2.3. Soil Heat Transfer Measurement

Before the SPB and ACB were ignited, we installed thermocouple units in each soil core sampling point. Each thermocouple unit contained six horizontally-exposed thermocouples at 6 soil depths (1, 2, 3, 4, 6, and 8 cm). Type K thermocouples connected to TC101A temperature data logger (MedgeTech, Warner, New Hampshire, USA) were used. Soil temperature was recorded at 5-second intervals for Groveland, but to save memory and battery capacity, 15-second recording intervals were used at Volcano. The burning trials lasted until combustion was complete, but we only collected temperature profiles for the first 240 minutes because of the limited data storage of the logger. Recorded data were aggregated into one-minute averages, and erratic measurements from data logger malfunctions were removed from further analyses.

2.4. Lab and Data Analyses

At each sampling depth, soil was analyzed for OM, C and N contents, and exchangeable cation (Ca, Mg, and K) concentrations. Before analyzing, soil samples were dried at 80°C and all live roots and rocks were removed during sieving through 2 mm sieve. Soil samples were subsequently split, homogenized, and ground. Total C and N were analyzed with LECO-600 analyzer (LECO Corp, St. Joseph, Michigan, USA). Calcium, Mg, and K were extracted using pH neutral ammonium acetate, and measured with an atomic absorption spectrometer (Model PinAAcle 500, Perkin Elmer, Shelton, CT, USA). Total OM was

measured by weight loss-on-ignition method [34] after 8-hr after combustion at 375°C. In addition, C and N concentration of the wood ash samples were measured similarly to soil samples.

Analysis of variance was conducted to detect the differences in response variables by burn method (ACB vs. SPB) and depth. For soil temperature data, peak temperature and lethal temperature duration were tested as the response variables. Lethal temperature duration was calculated through the summation of minutes over 60° C [22, 24] during the 240 minutes of burning. Peak temperature was log-transformed to satisfy the assumptions of model's error structure. In addition to burn method and depth, soil moisture content, fuel moisture content, and fuel type (i.e., small-fresh, mixed-fresh, and mixed-cured) were tested as the covariates. For soil properties, changes (Δ ; pre-burning - post-burning) in OM, C, N contents, Ca, Mg, and K concentrations after burning were used as the response variables. Total burning time was added in the soil-property-test models. For ash properties, C, N contents, Ca, Mg, and K concentration were tested. Burn method, fuel moist, fuel type, and total burning time were included in the ash-test models. All analyses were conducted using the R statistical package [35].

3. RESULTS

3.1. Soil Heat Transfer

At Volcano the peak temperature (389 °C) was at the 1 cm depth in the cured mixed-size fuel SPB. Data from the 1 cm depth under the ACB were lost due to mechanical malfunction. However, it is likely the 1 cm depth ACB temperature would be similar to the SPB with a similar fuel since the peak temperature at the 2 cm depth reached 315.6 °C. Highest peak temperatures were recorded at the midpoint and long-edge locations of SPB and ACB, respectively. Both sites' average peak temperature of all 3 sample locations at the 1 cm depth for ACB was 133.2°C, whereas it was 162.2°C for SPB (Figure 2; overall average of ACB and SPB: 147.7°C). As expected, the temperature pulse decreased with increase

of soil depth and average peak temperatures at 8 cm depth were 81.8°C and 78.0°C for ACB and SPB, respectively.

122

124 FIGURE 2. MEAN PEAK TEMPERATURE BY SOIL DEPTH. ERROR BARS REPRESENT 1-STANDARD DEVIATIONS.

The result of analysis of variance indicated that there was no significant difference in peak temperature between ACB and SPB (P = 0.446) (Table 2). However, significant differences were detected by soil depth (P < 0.001) and soil moisture content (P < 0.001). The coefficient for soil depth indicated that peak temperature decreased by 7.8% as 1 cm increase in soil depth. And 1% increase in soil moisture

content was associated with 4.9% decrease in peak temperature. Other covariates (i.e., fuel moisture content and fuel type) were not significantly correlated with peak temperature.

Model/source	d.f.	MS	F-statistic	P-value
Peak temperature ^{1, 2}				
Burn method	1	0.0765	0.585	0.446
Depth	1	5.0555	38.647	< 0.001
Soil moisture	1	4.1666	31.851	< 0.001
Lethal temperature duration	on^2			
Burn method	1	7178	1.819	0.180
Depth	1	183170	46.407	< 0.001
Soil moisture	1	85878	21.758	< 0.001

Table 2. Test results of analysis of variance for peak temperature and lethal temperature duration.

¹Log-transformed

² non-significant variables (i.e., fuel moisture content and fuel type) were excluded in the model.

Lethal temperature duration exhibited similar results with peak temperature (Figure 3). As expected, the maximum lethal temperature duration was observed at the 1 cm depth and occurred at the SPB midpoint location (range: 200-235 minutes out of 240 minutes) and it was consistent to the results of peak temperature. The average lethal temperature duration of all locations under the SPB occurred at the 1 cm depth and lasted for 191 minutes. At the 8 cm depth, lethal temperature lasted only for 89 minutes. Approximately 25% of all temperature measurements across both burning methods had no lethal temperatures at the 8 cm depth.

126 FIGURE 3. MEAN LETHAL TEMPERATURE DURATION BY SOIL DEPTH. ERROR BARS REPRESENT 1-STANDARD

127 deviations.

128

125

- 129 The analysis of variance of lethal temperature yielded a similar result as peak temperature (Table 2).
- Burning method (SPB vs. ACB) did not affect the duration of lethal temperature (P = 0.180). As soil
- 131 depth increased, lethal temperature duration was significantly less (*P* < 0.001); for each 1 cm depth
- 132 increment increase, the lethal temperature duration was reduced by approximately 15.3 minutes. Likewise
- 133 the result of peak temperature, only soil moisture content was significantly associated with the lethal
- 134 temperature duration among the tested covariates (P < 0.001). The estimated coefficient indicated that 1%
- 135 increases in soil moisture content

was related with 7.3 minutes decrease in the lethal temperature

136 duration.

137

138 3.2. Change in Soil Properties

- 139 In general, Volcano had lower nutrient contents than Groveland (Table 2). In particular, N contents
- 140 $\,$ at Volcano was quite low; only 3.3% level of Groveland. Groveland had 64% and 43% higher OM and C $\,$
- 141 contents than Volcano. Cation concentrations were consistent; Groveland's soil contained 114%, 363%,
- 142 and 488% more Ca, Mg, and K as compared to Volcano's soil.

143 Table 3. Average change from pre-burn to post burn in soil chemical properties at two soil depths in the mineral soil and C and N

144	concentration of ash samples.	Values in parentheses are	the standard error (n=18 fo	r each burning trial).
-----	-------------------------------	---------------------------	-----------------------------	------------------------

			Grove	eland			Vol	cano	
Properties	Depth _	Air Curta	Air Curtain Burner		Burning	Air Curta	in Burning	- Slash Pile burning	
	() _	Pre-burn	Post-burn	Pre-burn	Post-burn	Pre-burn	Post-burn	Pre-burn	Post-burn
OM contents (Mg ha ⁻¹)	0-10 10-20	94.9 (4.2) 83.5 (5.1)	102.8 (5.2) 87.0 (5.3)	125.7 (4.4) 109.9 (4.6)	114.3 (2.9) 125.3 (5.0)	94.9 (11.2) 57.7 (4.8)	56.1 (5.5) 75.6 (6.5)	50.4 (4.5) 57.7 (4.5)	58.7 (5.0) 63.5 (4.5)
C contents (Mg ha ⁻¹)	0-10 10-20	76.5 (3.8) 76.0 (4.4)	88.2 (4.5) 78.2 (3.5)	97.6 (3.9) 96.7 (3.3)	99.1 (3.2) 112.3 (4.6)	70.1 (6.5) 61.0 (4.3)	63.5 (4.8) 85.0 (6.4)	49.4 (3.0) 58.5 (3.8)	56.7 (3.9) 63.1 (3.2)
N contents (kg ha ⁻¹)	0-10 10-20	690 (697) 564 (669)	923 (845) 572 (726)	1568 (618) 1027 (809)	1374 (599) 1518 (652)	41 (290) 0 (n.a.)	133 (551) 43 (360)	57 (403) 0 (n.a.)	0 (n.a.) 0 (n.a.)
Ca concentration (mg/kg)	0-10 10-20	2524 (31) 2321 (35)	2599 (35) 2021 (32)	5373 (36) 3987 (48)	5567 (37) 4614 (35)	4770 (54) 3231 (41)	4539 (53) 3884 (56)	2738 (33) 1753 (26)	2618 (39) 1797 (28)
Mg concentration (mg/kg)	0-10 10-20	251 (11) 197 (10)	215 (9) 180 (9)	398 (7) 337 (11)	417 (8) 374 (7)	99 (6) 83 (8)	126 (8) 113 (9)	67 (6) 47 (5)	68 (6) 49 (5)
K concentration (mg/kg)	0-10 10-20	376 (16) 375 (16)	429 (16) 378 (16)	931 (16) 950 (24)	867 (12) 721 (12)	112 (8) 115 (6)	152 (9) 145 (10)	145 (9) 118 (7)	135 (9) 108 (8)
C concentration in ash (%)	-	-	30.3 (4.6)	-	35.3 (3.4)	-	51.6 (4.6)	-	65.6 (3.8)
N concentration in ash (%)	-	-	0.29 (0.30)	-	0.29 (0.32)	-	0.40 (0.37)	-	0.47 (0.26)
Ca concentration in ash (mg/kg)	-	-	9333 (31)	-	12187 (31)	-	13221 (60)	-	9566 (51)
Mg concentration in ash (mg/kg)	-	-	3471 (44)	-	5364 (40)	-	8080 (68)	-	3356 (47)
K concentration in ash (mg/kg)	-	-	4376 (14)	-	16125 (71)	-	27338 (113)	-	8594 (83)

- 146 Across all soil properties, burning method appeared not to result in any notable changes except K
- 147 concentration (Table 4). The average of OM contents did not change at the level of 81 Mg ha⁻¹ by
- 148 burnings, and reductions of OM contents were found only at the 0-10 cm depth of SPB in Groveland and
- 149 ACB in Volcano. However, we could not find any statistical evidence for the effects of burning method
- 150 on the changes in OM contents (P = 0.485). In addition, none of other covariates were not associated with
- 151 the changes in OM contents after burning trials. The tests for changes in C and N contents yielded the
- 152 same results with OM.

154 Table 4. Test results of analysis of variance for soil properties. Numbers represent the pvalues and

155 significant results were marked in bold fonts (*P*<0.05).

Property change (Δ)	Burn	Depth	Soil	Fuel	Fuel type	Burn time
	method		moisture	moisture		
OM contents (Mg ha-1)	0.485	0.112	0.708	0.817	0.837	0.275
C contents (Mg ha-1)	0.862	0.127	0.862	0.995	0.353	0.784
N contents (kg ha ⁻¹)	0.599	0.289	0.469	0.937	0.175	0.482
Ca concentration (mg/kg)	0.706	0.328	0.246	0.326	0.077	0.957
Mg concentration (mg/kg)	0.678	0.436	0.013	0.564	0.921	0.198
K concentration (mg/kg)	0.009	0.214	0.001	0.619	0.186	0.776

156

- 157 Overall average pre-burning Ca, Mg, and K concentrations were 3404.0 mg kg⁻¹ (SE = 45.7), 176.7
- 158 mg kg⁻¹ (SE = 11.5), and 346.2 mg kg⁻¹ (SE = 17.5), respectively (Table 2). After burning, they were
- 274 3391.4 mg kg⁻¹ (SE = 43.7), 181.0 mg \cdot kg⁻¹ (SE = 12.2), and 408.7 mg \cdot kg⁻¹ (SE = 20.9). Among the

- 275 measured cations, only K was affected by the burning method (*P*=0.009; Table 4). The SPB retained more
- 276 K than ACB by 121.2 mg kg⁻¹ in the soil after burning trial. Soil moisture content was positively

- 277 associated with the changes in Mg (coefficient = 5.3) and K (coefficient = 21.4) concentrations. However,
- 278 Ca concentration change was affected none of tested factors.
- Average C concentration in ash generated from ACB and SPB burns were 30.3% (Groveland; ACB),
- 51.5% (Volcano; ACB), and 35.3% (Groveland; SPB), 65.5% (Volcano; SPB), respectively (Table 2).
- Average Ca concentration of ash for ACB and SPB across all burning trials were 11666 (SE = 58) and
- 10614 (SE = 49) mg kg⁻¹, indicating a similar level between two burning methods (P = 0.292; Table 5). In
- 283 addition, Mg concentrations in the ash was not differed by burning method (ACB: 6105 (SE = 66) mg kg⁻
- ¹, SPB: 4159 (SE = 46) mg kg⁻¹; P = 0.678). Contrary to the other cations in the wood ash, K
- concentrations from the ACB was 21597 (SE = 123) mg kg⁻¹, which was significantly higher than the
- SPB (10911 (SE = 85) mg kg⁻¹; P = 0.020). Fuel moisture and fuel type were not associated with any of
- ash properties. Total burning time was a significant factor for the C and N concentration in the ash.
- Additional one hour of burning time reduced 9.5% and 0.06% of C and N concentration, respectively.
- 289
- 290 Table 5. Test results of analysis of variance for ash properties. Numbers represent the pvalues and
- significant results were marked in **bold** fonts (*P*<0.05).

Property	Burn method	Fuel moisture	Fuel type	Burn time

0.188	0.122	0.002
0.126	0.257	0.009
0.191	0.112	0.074
0.553	0.103	0.221
0.726	0.054	0.162
	0.188 0.126 0.191 0.553 0.726	0.188 0.122 0.126 0.257 0.191 0.112 0.553 0.103 0.726 0.054

294 4. Discussion

- As a byproduct of harvesting or thinning activities for various objectives including restoration or
- 296 stand density reduction, increasing amount of forest residues are being produced and piled in the western
- 297 United State forests [36]. One of the simple disposal methods is burning, however, its impacts on soil
- 298 health and productivity are considerably variable, from temporary to long-term soil damage, by many
- 299 factors such as soil characteristics, fuel distribution, piling method, and species composition [36].
- 300 However, our knowledge for the ecological consequences of the soil damages is still limited [37]. Since
- 301 the coverage of piled woody residues could reach up to 30% of thinning units in a certain site of
- 302 California [38], a detrimental soil impact can lead to not only the substantial economic costs but also
- 303 ecological damages. Thus, investigation of soil heat transfers and subsequent changes in soil properties
- 304 are required to evaluate the potential adverse impacts on soil health and productivity.
- 305 The measured soil properties in this study play the important roles in addressing soil health and
- 306 productivity. Soil OM provides various essential functions such as supporting soil C cycling, regulating N
- 307 and water availability, and supporting biodiversity [39, 40]. Soil C is a major element of OM. Soil N is
- 308 the most important limiting nutrient of plant growth in general forests [41, 42]. The cations are also the
- 309 elements consisting of the body of plant, and the amount of those cations can also indicate the degree of
- 310 fertility and health of soil (i.e., cation exchange capacity)[43].
- 311 Findings of this study indicate that there was not enough evidence to support the hypothesis that
- 312 ACB generates greater heat pulse than SPB as there were no notable differences in temperature profiles or

- 313 soil chemical properties between two burn methods. Both ACB and SPB burns maintained the maximum
- temperature that wood fuel combustion can reach (approx. 1027-1100°C) [44, 45] when there is a
- 315 continuous fuel and the optimum fuel configuration for efficient combustion. Therefore, since the heat
- 316 generated did not significantly alter soil quality using these burning methods, heat duration, including
- 317 smoldering phase may be an underlying cause of soil change. The ACB can consume fuels more
- 318 efficiently [46] than SPB. Furthermore, because of air quality requirements and proximity to local

- 319 communities, woody residue burning is often conducted on a small scale making the ACB a reasonable
- 320 option to manage forest woody residues in many regions.
- 321 Continuously supplying fuel to the ACB and SPB resulted in elevated soil temperatures at the long-
- 322 edge of ACB and midpoint of SPB. As operation proceeded, added fuels were more likely placed to the
- 323 long-edges of the ACB. This fuel addition method is also supported by the result that high peak
- 324 temperatures were observed by the thermocouples along the long-edge of the ACB; primarily at Volcano.
- 325 At Volcano we also used the ACB with the ember screening cover so that the fuel was inserted only
- through the slot located in the center of ACB. Therefore, the fuel supplying personnel threw fuels
- 327 preferably toward the long-edge side so the fuel in the center was not stacked and did not block the
- 328 feeding entrance. Likewise, in SPB fuels are more likely stacked at midpoint, because the radiated heat
- 329 made it difficult to approach the burning pile.
- 330 The majority of heat generated by fire is transferred to upward into the atmosphere by radiation,
- 331 convection, and mass transfer along with smoke, gases, and particular matters [47]. Thus, only limited
- heat (approximately 10-15%) is estimated to be transferred into the soil by radiation [18]. In addition,
- 333 since soil is not a good heat conductor [20], elevated soil temperatures near surface diminished rapidly
- 334 with increasing soil depth [18]. Hartford and Frandsen [48] suggested that the soil temperature rarely
- exceeds 80°C at 4 cm depth, while surface layer temperature reached to 300-500°C. This study
- 336 demonstrated a consistent outcome with those assertions; a moderate heat transfer to deeper soil layer

- 337 while maintaining the maximum temperatures for wood combustion aboveground (Figure 3). However,
- 338 heat transfer can vary with multiple factors such as fuel characteristics, weather conditions, fire behavior,
- 339 and soil properties [22, 47]. Thus, more experimental replicates with a wider range of environmental
- 340 conditions are essential to understand the rate of temperature reduction with soil depth.

- 341 Fire duration can also play an important role; long-duration fires caused by smoldering or heavily-
- 342 loaded SPB can transfer substantial heat to belowground. Busse *et al.* [24] mimicked broadcast burning
- 343 after mastication and reported the maximum soil surface temperatures reached 500-600 °C (dry soil) and
- 344 400-500 °C (wet soil), and observed peak temperatures at 10 cm ranged from 40-105°C. Neary *et al.* [22]
- 345 also observed severe soil heating; 700°C at surface over 250°C at 10 cm depth, and greater than 100°C at
- 22 cm depth. In the extreme, soil heating has been observed 1.36 m deep under heavy slash-pile[23].
- 347 Thus, to minimize possible adverse impact of soil heating, the duration of aboveground combustion,
- including smoldering phase, should be minimized.
- 349 Fire acts to reduce the chemical elements and physical condition of the wood [49]. Heat reduces the
- 350 amount of nutrients and OM through volatilization and combustion. There have been abundant reports
- 351 concerning how intensive fires, such as SPB, reduces OM contents (e.g. [44, 50-53]). Even at low
- 352 temperatures (i.e, <100°C), losses of soil OM may occur [22, 47, 49]. As temperature increased, sensitive</p>
- 353 functional groups such as phenolic OH groups and COOH groups were eliminated [54]. Thus, high heat
- 354 pulse can consume OM in the soil layer, resulting in the decrease of soil OM [6]. However, increased soil
- 355 OM in mineral soil layer has also been observed, mainly due to the redistribution of OM from forest floor
- or slash [55, 56]. In addition, soil texture and soil moisture content can affect the soil chemical properties
- 357 after burning [57].

- 358 In general, soil N consistently decreased after burning (Figure 5). Fire scars in Arizona that were
- 359 created by heavily-loaded SPB, had a significant reduction in total N [6]. Therefore, if a burning
- 360 operation is conducted on soil where long-term degradation is a concern, then forest managers might have
- 361 to pay attention to how slash is burned so that N losses are minimized. However, fire can transform many
- 362 chemical elements, including N, to more available forms for plants or organisms [49]. Fire causes an
- 363 immediate increase in ammonium ions (NH ⁺), a readily available form of N through mineralization [58,

- 364 59]. In addition, favorable microenvironments (e.g., elevated nutrient, improved soil microclimate, and
- 365 increased pH) increase N-fixation [40]. Wan *et al.* [60] support the argument that there is a significant
- $_{366}$ decrease of fuel N and an increase in NH_4 and $NO_3.$ However, the post-fire pulse of available N quickly
- 367 returns to pre-burning levels, or lower, with immobilization as C:N ratio increases or through leaching if
- 368 OM is lost [56]. Soil N responses to fire emphasize the importance of encouraging native vegetation
- 369 recovery immediately after SPB.
- 370 Extractable cations such as Ca, Mg, and K have been known to increase after burning due the
- 371 oxidation of surface OM (e.g. [51, 61]). However, results from this study failed to find supporting
- 372 evidence for increases in those cation concentrations. Because all of burning trails were conducted on the
- 373 bare grounds with exposed mineral soil surface, thus there likely was not enough surface OM to induce
- 374 any significant changes in these nutrients. In addition, the lack of significant differences may have been
- due to high variability of cations or an insufficient number of samples.
- 376 Wood ash application have been considered as a potential soil amendment for both forest and
- 377 agricultural sites [26, 62]. Not only can wood ash neutralize soil acidity [63], it can also provide nutrients,
- 378 including C, N, Mg, Ca, K, and P, to the mineral soil [64]. However, the degree and extent of the nutrient
- 379 changes are related to burn temperature. For example, the C and K concentration in ash decreases as burn
- temperature increases [64, 65]. Thus, the outcome for ash chemical concentrations in our study may be
- 381 partially supported by the fact that soil heating under ACB and SPB were not significantly different.

- 382 Difference in soil C and N concentrations at our two locations indicated that they were likely affected by
- 383 the interaction of other factors such as fuel type (i.e. tree species), fuel moisture condition, and weather
- 384 condition. Although there is little empirical evidence from literature [26] that C and N contents in ash
- 385 increased site productivity, there is evidence that it can act as a fertilizer source or to increase soil pH in
- 386 acidic soils [66]. Moreover, the abundant cation concentration in wood ash can play a critical role in

- 387 compensating for the loss of mineral nutrients by burning, if needed. Thus, we recommend using wood
- 388 ash created in ACB as a soil amendment, especially on the sites with substantial nutrient deficiencies.

390 5. CONCLUSION AND MANAGEMENT IMPLICATIONS

- 391 In this study, we compared the differences in the heat transfer and subsequent changes in soil
- 392 properties between ACB and SPB. Our experimental trials displayed the results that there were no
- 393 significant impacts of different burning methods on peak temperature and lethal temperature duration.
- 394 Accordingly, we could not find any substantial changes in soil chemical properties except K
- 395 concentration. This effect on K concentration was also observed in the analysis of ash properties. But
- 396 other wood ash properties were not affected by the burning methods. There was no enough evidence for
- 397 the different effects on soil heat transfer and soil properties between two different burning methods.
- 398 Rather, the results indicate that the soil moisture content is a key factor for heat transfer and soil property
- 399 changes.
- 400 North American, especially western USA, forest managers are now facing challenges of managing
- 401 increased woody residues generated from harvesting such as fuel reduction treatments, salvage logging
- 402 from wildfire and insect outbreak, or other diverse restoration efforts. Utilization of woody biomass for
- 403 bioenergy or other by-products still has many constraints. Thus, it is expected that burning disposal
- 404 methods will be commonly

adopted in many forests to reduce potential environmental hazards. However,

- 405 each burning method has its own disadvantages and they may also cause other environmental or safety
- 406 issues. Therefore, forest managers should determine the advantages and limitations of each burning
- 407 method when deciding on which method to use based on site and wood biomass volume. This study
- 408 investigated the heat flux into the soil from ACB and SPB and subsequent changes in soil properties. Our
- 409 results suggest that:

- 1. Since both ACB and SPB produce high burn temperatures close to the maximum for wood 411 412 combustion, it is important to shorten the burn duration to prevent potential adverse ecological consequences associated with excessive heat. In terms of burning duration for a given 413 amount of 414 fuel, ACB is preferred to SPB because ACB has higher productivity than SPB. 415 2. Wet and/or high OM content soils can provide some ameliorative qualities for reducing negative impacts of heat as compared to dry or low OM content soils. Thus, burning after rain over 416 the ground with duff layer is recommended. 417 418 3. If we extend our results to other sites, cold or arid regions may need to do post-burning 419 amendments to provide for immediate vegetation recovery. 4. Using wood ash as a fertilizer can ameliorate some potential negative impacts of burning 420 on the 421 mineral soil. 422 423 This study determined there were no significant differences between ACB and SPB on two forest-424 urban interface sites in northern CA, USA, but may be limited in scope since the replicates of experiment 425 were lacking due to high monetary and time costs, and limitations by logistics and regulation. In addition, our trials were conducted on bare mineral soil where the surface was highly disturbed and 426 compacted. Thus, our result may not be consistent with other trials conducted less disturbed forest soil where 427 an intact
- 428 forest floor is present. Further

studies with additional replicates which encompass a wider range of soil

429 and fuel conditions are required.

430

431 ACKNOWLEDGEMENTS

432	The authors are grateful to Eunjai Lee, Joel Bisson, Joanne Tirocke, Rick Whybra, Lester Scofield,
433	Joe Harvey, Stephen Bakken, and Dr. Jeffrey Kane for their contribution. The authors give special thanks
434	to Dr. Peter Robichaud for providing thermocouple units. Funding was provided by the California State
435	University Agricultural Research Institute, project no. 15-06-001.

437 AUTHOR CONTRIBUTIONS

- P.D. and H.H conceived/designed the experiment, provided materials/analysis tools, and reviewed
 the manuscript; W.J. performed the experiment and data analyses and wrote the manuscript.
 440
 441 CONFLICTS OF INTEREST
- 442 The authors declare no conflict of interest
- 443

436

444 **References**

- 1. Keeley, J.E.; Safford, H.; Fotheringham, C.J.; Franklin, J.; Moritz, M. The 2007 southern California
- 446 wildfires: Lessons in complexity. J. For. **2009**, *107*, 287-296.
- 447 2. Fornwalt, P.J.; Rhoades, C.C. Rehabilitating Slash Pile Burn Scars in Upper Montane Forests of the
- 448 Colorado Front Range. *Nat. Areas J.* **2011**, *31*, 177-182.
- 449 3. Busse, M.D.; Shestak, C.J.; Hubbert, K.R. Soil heating during burning of forest slash piles and wood
- 450 piles. Int. J. Wildland Fire **2013**, 22, 786-796.

451	4. Six, D.L.; Meer, M.V.; DeLuca, T.H.; Kolb, P. Pine engraver (Ips pini) colonization of logging
452	residues created using alternative slash management systems in western Montana. West. J. Appl.
453	For. 2002 , <i>17</i> , 96-100.

454 5. Springsteen, B.; Christofk, T.; York, R.A.; Mason, T.; Baker, S.; Lincoln, E.; Hartsough, B.R.;

455 Yoshioka, T. Forest biomass diversion in the Sierra Nevada: Energy, economics and emissions.
456 *Calif. Agr.* 2015, 69, 142-149.

457 6. Korb, J.E.; Johnson, N.C.; Covington, W.W. Slash pile burning effects on soil biotic and chemical

458 properties and plant establishment: Recommendations for amelioration. *Restor. Ecol.* 2004, *12*, 52459 62.

460 7. Lowe, K. *Treating Slash after Restoration Thinning*; Northern Arizona University, Ecological
461 Restoration Institute Working Papers 13: Flagstaff, AZ, USA, 2005; p. 4.

462 8. Hardy, C.C. *Guidelines for Estimating Volume, Biomass, and Smoke Production for Piled Slash*;

463 USDA Forest Service, Pacific Northwest Research Station General Technical Report PNW-GTR464 364: Portland, OR, USA, 1998; p. 28.

465 9. Arocena, J.M.; Opio, C. Prescribed fire-induced changes in properties of sub-boreal forest soils.

466 *Geoderma* **2003**, *113*, 1-16.

467 10. Robertson, K. Loss of organic matter and carbon during slash burns in New Zealand exotic forests.
468 *New Zeal. J. For. Sci.* 1998, 28, 221-241.

11. Thorpe, H.C.; Timmer, V.R. Early growth and nutrient dynamics of planted *Pinus banksiana*seedlings after slash-pile burning on a boreal forest site. *Can. J. Soil Sci.* 2005, *85*, 173-180.

471	12. Neal, J.L.; Wright, E.; Bollen, W,B, Burning Douglas-fir slash: Physical, Chemical, and Microbial
472	Effects in Soil; Oregon State University, Forest Research Laboratory Research Paper 1: Corvallis,
473	OR, USA, 1965; p. 32.

- 474 13. Halpern, C.B.; McKenzie, D. Disturbance and post-harvest ground conditions in a structural retention
 475 experiment. *For. Ecol. Manage.* 2001, *154*, 215-225.
- 476 14. Parker, D.L. Integrated Pest Management Guide: Arizona Five-spined ips, Ips lecontei Swaine, and
 477 Pine Engraver, Ips pini (Say), in Ponderosa Pine; USDA Forest Service, Southwestern Region R-3
- 478 91-9: Albuquerque, NM, USA, 1992; p. 17.
- 479 15. Ainslie, B.; Jackson, P.L. The use of an atmospheric dispersion model to determine influence regions
 480 in the Prince George, B.C. airshed from the burning of open wood waste piles. *J. Environ. Manage.*481 2009, 90, 2393-2401.
- 482 16. Schapiro, A.R. The use of Air Curtain Destructors for fuel reduction; USDA Forest Service,
- 483 Technology & Development Program Fire Management Tech Tips 0251 1317-SDTDC: San
- 484 Dimas, CA, USA, 2002; p. 5.
- 485 17. Miller, C.A.; Lemieux, P.M. Emissions from the burning of vegetative debris in air curtain
 486 destructors. *J. Air Waste Manage. Assoc.* 2007, *57*, 959-967.
- 487 18. DeBano, L.F.; Neary, D.G. Part A—The soil resource: its importance, characteristics, and general
- 488 responses to fire. In Wildland Fire in Ecosystems: Effects of Fire on Soil and Water; Neary, D.G.;
- 489 Ryan, K.C.; DeBano, K.C., Eds.; USDA Forest Service RMRS-GTR-42-volume 4: Ogden, UT,
- 490 USA, 2005; pp. 21-28.

- 491 19. Jiménez Esquilín, A.E.; Stromberger, M.E.; Massman, W.J.; Frank, J.M.; Shepperd, W.D. Microbial
- 492 community structure and activity in a Colorado Rocky Mountain forest soil scarred by slash pile
- 493 burning. Soil Biol. Biochem. **2007**, 39, 1111-1120.
- 494 20. Busse, M.D.; Shestak, C.J.; Hubbert, K.R.; Knapp, E.E. Soil physical properties regulate lethal
- 495 heating during burning of woody residues. *Soil Sci. Soc. Am. J.* **2010**, *74*, 947-955.
- 496 21. Massman, W. Modeling soil heating and moisture transport under extreme conditions: Forest fires and
- 497 slash pile burns. *Water Resour. Res.* **2012**, *48*, W10548.
- 498 22. Neary, D.G.; Klopatek, C.C.; DeBano, L.F.; Ffolliott, P.F. Fire effects on belowground sustainability:
- 499 A review and synthesis. *For. Ecol. Manage.* **1999**, *1*22, 51-71.
- 500 23. Massman, W.; Frank, J. Effect of a controlled burn on the thermophysical properties of a dry soil
- 501 using a new model of soil heat flow and a new high temperature heat flux sensor. *Int. J. Wildland*
- 502 *Fire* **2004**, *13*, 427-442.
- 503 24. Busse, M.D.; Hubbert, K.R.; Fiddler, G.O.; Shestak, C.J.; Powers, R.F. Lethal soil temperatures
- 504 during burning of masticated forest residues. *Int. J. Wildland Fire* **2005**, *14*, 267-276.
- 505 25. Page-Dumroese, D.S.; Keyes, C.; Jurgensen, M.; Massman, W.; Butler, B. Below-ground Impacts on
- 506 Pile Burning in the Inland Northwestern US: Joint Fire Science Program Final Report: JFSP
- 507 Project No. JFSP #11-1-8-2. 2015; p. 21.
- 508 26. Augusto, L.; Bakker, M; Meredieu, C. Wood ash applications to temperate forest ecosystems-
- 509 potential benefits and drawbacks. *Plant and Soil* **2008**, *306*, 181-198.
- 510 27. Kahl, J.S.; Fernandez, I.J.; Rustad, L.E.; Peckenham, J. Threshold application rates of wood ash to an

511 acidic forest soil. J. Environ. Qual. **1996**, 25, 220-227.

512	28. Lundström, U.; Bain, D.; Taylor, A.; Van Hees, P.; Geibe, C.E.; Holmström, S.; Melkerud, PA.;
513	Finlay, R.; Jones, D.; Nyberg, L. Effects of acidification and its mitigation with lime and wood ash
514 <i>Poll.:</i>	on forest soil processes in southern Sweden. A joint multidisciplinary study. Water Air Soil
515	<i>Focus</i> 2003 , <i>3</i> , 167-188.
516	29. Donnelly, P.K.; Entry, J.A.; Crawford, D.L.; Cromack, K. Cellulose and lignin degradation in forest
517	soils: response to moisture, temperature, and acidity. <i>Microb. Ecol.</i> 1990 , <i>20</i> , 289-95.
518	30. Rousk, J.; Brookes, P.C.; Bååth, E. Contrasting soil pH effects on fungal and bacterial growth suggest
519	functional redundancy in carbon mineralization. Appl. Enviro. Microb. 2009, 75, 1589-1596.
520	31. Ulery, A.L.; Graham, R.C.; Amrhein, C. Wood-ash composition and soil pH following intense
521	burning. <i>Soil Sci.</i> 1993 , <i>156</i> , 358-64.
522	32. Thy, P.; Jenkins, B.; Grundvig, S.; Shiraki, R.; Lesher, C. High temperature elemental losses and
523	mineralogical changes in common biomass ashes. Fuel 2006, 85, 783-795.
524	33. Soil Survey Staff. Keys to Soil Taxonomy, 12th ed., 2014; USDA Natural Resources

525 Service, Washington, DC, USA, 2014; p. 360.

526 34. Ball, D.F. Loss-on-ignition as an estimate of organic matter and organic carbon in non-calcareous
527 soils. *J. Soil Sci.* 1964, 15, 84-92.

528 35. R Development Core Team. R: A language and environment for statistical computing. R Foundation

for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, 2008; URL <u>http://www.R-</u>
project.org.

531 36. Page-Dumroese, D.S.; Busse, M.D.,; Archuleta, J.G.; McAvoy, D.; Roussel, E. Methods to reduce

forest residue volume after timber harvesting and produce black carbon. *Scientifica* **2017**, Article

533 ID 2745764.

Conservation

- 534 37. Massman, W.J.; Frank, J.M.; Mooney, S.J. Advancing investigation and physical modeling of first-535 order fire effects on soils. Fire Ecol. 2010, 6, 36-54. 536 38. Creech, M.N.; Kirkman, K. L.; Morris, L.A. Alteration and recovery of slash pile burn sites in the 537 restoration of a fire-maintained ecosystem. Rest. Ecol. 2012, 20, 505-516. 538 39. Jurgensen, M.F.; Harvey, A.E.; Graham, R.T.; Page-Dumroese, D.S.; Tonn, J.R.; Larsen, M.J.; Jain, 539 T.B. Impacts of timber harvesting on soil organic matter, nitrogen, productivity, and health of Inland Northwest forests. For. Sci. 1997, 43, 234-251. 540 541 40. Jang W.; Keyes C.R.; Page-Dumroese. Impact of Biomass Harvesting on Forest Soil Productivity in 542 the Northern Rocky Mountains. USDA Forest Service, Rocky Mountain Research Station General 543 Technical Report RMRS-GTR-341: Fort Collins, CO, USA, 2015; p. 35. 544 41. Binkley, D. Connecting soils with forest productivity. In Management and productivity of western-545 montane forest soils. Symposium proceedings. Harvey, A.E.; Neuenschwander, L.F., Comps.; 546 USDA Forest Service RMRS-GTR-280: Ogden, UT, USA, 1991; pp. 66-69. 547 42. Vitousek, P.M.; Howarth, R.W. Nitrogen limitation on land and in the sea: how can it occur? 548 Biogeochem. 1991, 13, 87-115. 43. DeByle, N.V. 1980. Harvesting and site treatment influences on the nutrient status of lodgepole pine 549
- 550 forests in western Wyoming. In Environmental consequences of timber harvesting in rocky
- 551 mountain coniferous forests. Symposium proceedings. USDA Forest Service INT-GTR-90: Ogden,
- 552 UT, USA, 1979; pp. 133-155.
- 553 44. Raison, R.J. Modification of the soil environment by vegetation fires, with particular reference to nitrogen transformations: A review. Plant Soil 1979, 51, 73-108. 554
- 555 45. De Haan, J.D.; Icove, D.J. Kirk's Fire Investigation; Pearson Higher Ed., 2011.

- 46. Lee, E.; Han, H.-S. Air curtain burners: A tool for disposal of forest residues. (manuscript in
 preparation).
- 47. DeBano, L.F.; Neary, D.G.; Ffolliott, P.F. Fire Effects on Ecosystems; John Wiley & Sons, 1998.
- 48. Hartford, R.A.; Frandsen, W.H. When it's hot, it's hot... or maybe it's not! (Surface flaming may not
 portend extensive soil heating). *Int. J. Wildland Fire* **1992**, *2*, 139-144.
- 49. Knoepp, J.D.; DeBano, L.F.; Neary, D.G. Soil chemistry. In *Wildland Fire in Ecosystems: Effects of Fire on Soils and Water*; Neary, D.G.; Kevin, C.; DeBano, L.F., Eds.; USDA Forest Service
- 563 RMRS-GTR-42-vol.4: Ogden, UT, USA, 2005; pp. 53-72.
- 564 50. Dyrness, C.; Youngberg, C. The effect of logging and slash-burning on soil structure. *Soil Sci. Soc.*565 *Ame. J.* 1957, *21*, 444-447.
- 566 51. Alban, D.H. *Influence on Soil Properties of Prescribed Burning under Mature Red Pine*. USDA
 567 Forest Service, North Central Forest Experiment Station Research Paper NC-RP-139: St. Paul,
- 568 MN, USA, 1977; p. 8.
- 569 52. Clinnick, P.; Willatt, S. Soil physical and chemical properties measured in an "ashbed" following
 570 windrow burning. *Austral. For.* 1981, 44, 185-189.
- 571 53. Rab, M. Soil physical and hydrological properties following logging and slash burning in the
- 572 *Eucalyptus regnans* forest of southeastern Australia. *For. Ecol. Manage.* **1996**, 84, 159-176.
- 573 54. Schnitzer, M.; Hoffman, I. Pyrolysis of soil organic matter. Soil Sci. Soc. Am. J. 1964, 28, 520-525.
- 574 55. Wells, C.G.; Campbell, R.E.; DeBano, L.F.; Lewis, C.E.; Fredriksen, R.L.; Franklin, E.C.; Froelich,
- 575 R.C.; Dunn, P.H. Effects of Fire on Soil: A State-of-knowledge Review; USDA Forest Service,
- 576 General Technical Report WO-7: Washington, DC, USA, 1979; p. 34.

578	factors that affect site productivity. In Proceedings - Management and Productivity of Western-
579	montane Forest Soils; Harvey, A.E.; Neuenschwander L.F., Comps.; USDA Forest Service GTR-
580	INT-280: Ogden, UT, USA, 1991; pp. 32-50
581	57. Page-Dumroese, D.S.; Busse, M.D.; Archuleta, J.G.; McAvoy, D.; Roussel, E. Methods to reduce
582	forest residue volume after timber harvesting and produce black carbon. Scientifica 2017, Article
583	ID 2745764.
584	58. Jurgensen, M.F.; Harvey, A.E.; Larsen, M.J. Effects of Prescribed Fire on Soil Nitrogen Levels in a
585	Cutover Douglas-Fir/Western Larch Forest; USDA Forest Service, Intermountain Forest and
586	Range Experiment Station Research Paper INT-275: Ogden, UT, USA, 1981; p. 6.
587	59. Giovannini, G. The effect of fire on soil quality. In Soil Erosion and Degradation as Consequence of
588	Forest Fires; Sala, M.; Rubio J.F., Eds.; Geoforma Ediciones: Barcelona, Spain, 1994; pp. 15-27.
589	60. Wan, S.; Hui, D.; Luo, Y. Fire effects on nitrogen pools and dynamics in terrestrial ecosystems: A
590	meta-analysis. Ecol. Appl. 2001, 11, 1349-1365.
591	61. Liang, B.; Lehmann, J.; Solomon, D.; Kinyangi, J.; Grossman, J.; O'neill, B.; Skjemstad, J.; Thies, J.;
592	Luizao, F.; Petersen, J. Black carbon increases cation exchange capacity in soils. Soil Sci. Soc. Am
593	<i>J.</i> 2006 , <i>70</i> , 1719-1730.
594	62. Vance, E.D. Land application of wood-fired and combination boiler ashes: An overview. J. Environ.
595	Qual. 1996, 25, 937-44.
596	63. Meiwes, K.J. Application of lime and wood ash to decrease acidification of forest soils. Water Air
597	Soil Poll. 1995 , 85, 143-52.

- 598 64. Etiégni. L.; Campbell, A.G. Physical and chemical characteristics of wood ash. *Bioresource Technol.*599 1991, 37, 173-178.
- 600 65. Misra, M.K.; Ragland, K.W.; Baker, A.J. Wood ash composition as a function of furnace temperature.
 601 *Biomass Bioenerg.* 1993, *4*, 103-116.
- 602 66. Pitman, R.M. Wood ash use in forestry-A review of the environmental impacts. *Forestry* 2006, 79,
 603 563-88.