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Wood Bioenergy and Soil Productivity Research 

D.A. Scott and D.S. Page-Dumroese 

Abstract: 

Timber harvesting of can effect both short- and long-term changes in forest ecosystem 

functions, and scientists from U.S.D.A. Forest Service Research and Development (FS R&D) 

have been studying these processes for many years. Biomass and bioenergy markets alter the 

amount, type, and frequency at which material is harvested, which in turn has similar yet 

specific impacts on sustainable productivity. The nature of some biomass energy operations 

provides opportunities to ameliorate or amend forest soils to sustain or improve their productive 

capacity, and FS scientists are leading the research into these applications. Research efforts to 

sustain productive soils need to be verified at regional, national, and international scope, and FS 

scientists work to advance methods for soil quality monitoring and to inform international criteria 

and indicators. Current and future FS research ranges from detailed soil process studies to 

regionally important applied research and to broad scale indicator monitoring and trend 

analysis, all of which will enable the U.S. to lead in the sustainable production of woody biomass 

for bioenergy. 

Introduction 

Many North American forests face wildfire, insect and disease outbreaks, and invasive 

species, resulting in part from overstocked or stressed stands [1]. These sources of forest stress 

are already being exacerbated by climate change [2]. For example, changes in the pattern, 

distribution, and severity of fire may result in large-scale impacts on species diversity and 

regeneration [3]. Further, commercial forestry in many regions face challenges related to 

decreased commodity values and increasing operational expenses, such that the cost of timber 

harvesting often exceeds its value, despite increasing interest in forest biomass utilization [4].  

Bioenergy from wood has been used for about a half-million years [5], initially for cooking 

and heating. Today, wood energy supplies about 9% of the worldwide demand for energy and is 



 

 

the single largest renewable energy source, equal to all other renewable sources combined. In 

addition, about 30% of the world’s population depends on wood for their primary source of 

energy. In the United States, wood was the sole source of human-harnessed energy until 1850, 

and remained the main source until coal became the primary source in the late 19th century [6]. 

Wood has been an important source of energy, and will continue to be for the foreseeable 

future. Large quantities of forest residues, including tops, limbs, cull sections, and non-

merchantable round wood are potentially available for use in the production of energy, fuels, 

biochar and other bioproducts, offsetting the use of fossil fuels and reducing greenhouse gas 

emissions [7]. Currently, there are approximately 303 million hectares of forestland in the US 

which could yield approximately 320 million dry tons of forest residues for bioenergy production 

[8].  

However, increasing harvest intensity to include biomass for bioenergy or other uses 

risks altering energy and nutrient cycles, soil quality, and other associated ecosystem services 

and attributes. The USDA Forest Service and partners have been studying the impacts of 

intensive forest harvesting on long-term sustainability for years on various experimental forests 

and other research installations [9]. Researchers and managers work closely together to 

understand how various woody biomass products, such as biochar, can be incorporated into 

management strategies and practices to maintain and improve forest productivity and health. 

Finally, as the leader for forest biomass and bioenergy research, the USDA Forest Service 

provides practical science to develop best management practices to improve stand productivity 

and health. This manuscript will provide an overview of the issues surrounding site productivity, 

incorporation of multi-use products like biochar into forest management practices, and the 

broader efforts of maintaining and enhancing forest health and productivity. 

Impacts of intensive harvesting on site productivity 

Increased forest product utilization inherent in woody biomass extraction has been linked 

to a multitude of impacts on altered energy cycles, short-and long-term hydrology, and a 
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number of soil properties and processes impacted by increasing the number of stand entries 

and removing additional wood. Most physical effects are the result of compaction and other 

forms of soil disturbance, which can increase in both extent and intensity if multiple entries are 

needed for traditionally merchantable wood as well as residues and non-merchantable wood 

[10,11]. This additional disturbance can reduce porosity, which limits movement of air, water 

and nutrients in the soil and negatively impact root growth, microbial activity and potentially 

reduce tree growth [12]. Soil chemistry and fertility are altered primarily by removing nutrients in 

harvested organic matter and from changes in nutrient leaching following harvest [13]. The loss 

of nutrient capital and organic matter due to biomass harvesting is of particular concern to 

sustaining site productivity and carbon sequestration potential.  

Logging residues, or the remainder of the standing tree after the removal of the 

merchantable bole, contain a disproportionately high nutrient concentration relative to the bole. 

Similarly, smaller and younger trees contain higher nutrient concentrations than older trees and 

deciduous trees generally contain more than conifers [14]. Since most plant nutrients are 

located in the branches and foliage, whole-tree harvesting can remove as much as three times 

the nutrients as conventional bole-only harvesting where tops are left on site [15–18]. However, 

the majority of site nutrients are contained in the forest floor and mineral soil (Table 1).  

  



 

 

Table 1. Nitrogen quantities (kg ha-1) by pool in four representative forest types of the 
United States and Canada [18,19] 

Location Forest Tree boles Whole-
trees 

All organic 
matter 

Soil1 

British 
Columbia 

Subboreal 
spruce 

195 253 1068 1630 

Idaho Mixed conifer 190 410 846 1222 

Louisiana Loblolly pine 134 229 352 796 

California Mixed conifer 218 609 1064 4578 
1Soil was sampled to 20, 30, 30, and 40 cm for the British Columbia, Idaho, Louisiana, and 
California soils, respectively 

Harvesting operations can also cause ground disturbance via tractors, excavators, 

trucks, and other wheeled or tracked vehicles. These disturbances result in a number of 

physical changes, such as compaction, soil mixing, and altered surface hydrology [20,21], but 

the extent, duration, degree, and distribution of the impacts are site, soil, and harvest method 

specific [22]. Soil disturbances can alter soil chemical, physical, and biological properties and 

hydrological function as well as affect residual tree root growth and function. Harvesting woody 

biomass can result in additional traffic and soil disturbance, and woody biomass is often used to 

mitigate soil physical disturbances and sediment movement. Harvest operations that place 

economic value on all of the woody biomass products often leave fewer residues on site for 

ecological functions and erosion control.  Best management practices often suggest that some 

portion of the non-merchantable material such as branches and foliage be left distributed on site 

to mitigate disturbance, protect the soil and reduce or prevent erosion (Ice, 2004)[FS1], and 

numerous states have developed or are developing best management practices for biomass 

harvesting [23,24].  

In practice the potential quantity of wood harvested is rarely realized; forest residue 

recovery varies widely depending on a number of factors. For example, [25] estimated that 

approximately 65% of forest residues could be recovered with current timber harvest methods. 

However, the Biomass Opportunity Supply Model (BIOS), assessed between 6 and 50% 

recovery rates from whole-tree even-aged management systems [26]. In a study in eastern 

Washington, [27] note that although approximately 30% of forest residues were available, only 
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20% could be recovered. No matter how much is recovered, bioenergy harvesting allows for a 

greater utilization of each tree as well as smaller trees which were previously considered non-

merchantable. 

Many National Forests have become overstocked due to fire suppression or limited 

cutting. When these forests are thinned, the non-merchantable biomass serves as fuel for 

wildfires and therefore, this material is often burned to reduce fuels, which may also alter soil 

physical and chemical properties [28,29]. In addition, biomass is often removed to facilitate 

regeneration [1]. The specific treatments vary among region and forest type, but often include 

some form of mechanical removal or comminution and may often be followed by burning. These 

site preparation treatments often incur even more nutrient removal than harvesting for biomass 

would. In a loblolly pine (Pinus taeda L.) stand in North Carolina, [30] compared conventional 

harvesting vs. whole-tree harvesting (which included hardwood removals) and conventional site 

preparation (roller-drum chopping followed by broadcast burning) to intensive site preparation 

(shearing, raking, and piling). Whole-tree harvesting followed by chopping and burning removed 

186.4 kg ha-1 N, 18.6 kg ha-1 P, and 34.7 kg ha-1 Ca. Comparatively, the bole-only harvest with 

shearing, raking and piling removed 711, 45.5, and 88.2 kg ha-1 N, P, and Ca, respectively. 

Thus, assessing the impact of biomass harvesting on soil productivity requires a complete 

analysis of treatments, not just a comparison of harvest intensities. In some ecosystems and 

soils after bioenergy harvest activities, long-term soil nutrient pool depletion has been found to 

be negligible and is projected to be at or above pre-harvest levels before the next rotation [31]. 

In some U.S. systems, this type of comparison has been studied for several decades, and this 

long-term research is vital to our understanding of biomass harvesting impacts. 

While research on the impacts of harvesting organic components of the forest on 

nutrient cycling has been conducted since at least the late 1800s, interest in the U.S. peaked in 

the 1970s for a host of reasons. First, a number of major research findings were noting the 

potential impact of forest harvesting on nutrients and productivity. One study of second-rotation 



 

 

Radiata pine (Pinus radiata D.Don) stands in South Africa indicated widespread declines in 

productivity due to organic matter reductions and subsequent declines in soil fertility [32], and, in 

the U.S., landmark research at the USFS Hubbard Brook Experimental Forest indicated 

clearcutting increased nutrient losses [33]. Secondly, several socioeconomic and political issues 

were accelerating harvesting and increasing interest in biomass harvesting. In 1973, the OPEC 

oil embargo forced the U.S. to consider alternatives, including woody biomass, to foreign 

petroleum. In 1976, the U.S. Congress passed the National Forest Management Act [34], which 

required the Department of Agriculture to conduct research to ensure that forest management 

practices did not degrade the productive capacity of the land. At the same time, timber 

production from the National Forests was rapidly rising to its highest level of over 13 billion 

board feet in 1976 [35], and in 1980 was projected to reach over 20 billion board feet by 2030 

[36].  

Major manuscripts, reviews and symposia were held over the next two decades related 

to the effects of forest management on productivity [37–41] and a host of symposia were 

sponsored by the International Energy Agency (IEA) [42]. While scientists developed increased 

understanding of the basic site processes, few studies had followed growth after harvest to 

determine actual productivity change and little direct evidence had been produced to answer the 

questions posed by Earl Stone [FS2]in his evaluation of research gaps in 1979 [43] : 

1. What levels of nutrient removal can our soil-forest systems sustain with no or only 

minor decrease in productivity capacity? What elements will become limiting first in 

the face of accelerated removals, and how will soils or forest types differ in 

response? 

2. How can we objectively predict the nature and magnitude of possible decreases in 

productivity, and what measures can be devised to avoid or mitigate such decreases, 

or even to increase productivity? 
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3. What will be the physical consequences, if any, of more frequent traffic by heavy 

harvesting equipment, and lower returns of organic matter to the soil? 

4. What unplanned secondary changes are likely as a result of altered nutrient 

circulation; as for example, in species composition, habitat diversity or pest 

problems? 

One landmark symposia was held in 1988 as the 7th North American Forest Soils 

Conference [44], and it holistically evaluated the state of knowledge on sustainable soil 

productivity. As part of this symposium, [45] reviewed the evidence available at that time for 

actual productivity declines. They found that of the scant evidence indicating productivity 

declines, reductions in site organic matter and/or soil porosity were common among the 

situations. In addition, limitations in modeling, chronosequences, and retrospective research 

[46] prompted the group lead by Bob Powers [FS3]to design a long-term study aimed at 

answering some of these most difficult questions related to harvesting and soil productivity. This 

experiment, termed the Long-Term Soil Productivity (LTSP) experiment [45,47], was intended to 

provide scientific progress toward an understanding of mechanisms related to sustaining soil 

productivity in managed forests as well as practical guidelines for managers. While not 

specifically designed to test the impacts of biomass harvesting, its design was ideal for testing 

specific issues inherent in biomass harvesting (e.g., soil organic matter removal and compaction 

within a climatic gradient). 

Unlike most forest soil disturbance and harvesting studies, the LTSP experiment did not 

test specific harvesting technologies or silvicultural treatments. It imposed gradients ranging 

from minimal disturbance of site organic matter and soil porosity change to maximum 

disturbance. Thus, it did not compare operational “conventional” harvesting to “biomass” 

harvesting, but it did compare a minimum level of site organic matter removal, bole-only 

harvesting (only the locally merchantable bole was removed) to complete tree removal (similar, 



 

 

although more intensive than operational “biomass” harvesting) and complete aboveground 

organic matter removal (including forest floor removal, but stumps and coarse roots were not 

removed). Similarly, soil porosity loss was not accomplished by testing “wet-weather harvesting” 

to “dry harvesting” with current mechanical technologies. Gradients of porosity reduction were 

imposed from no traffic on plots to severe porosity reductions, and were applied to the entire 

plot. These treatments were conducted during the harvest of mature forest stands on National 

Forests and partner lands throughout the U.S. and Canada beginning in 1990 and continuing 

throughout the early 2000s across dozens of sites throughout most major timber producing 

areas.  

This experiment represents the most widespread, coordinated, long-term test of varying 

levels of harvest intensity on soil productivity in the world, and has been maintained as a grass-

roots effort by the scientists and land managers since the mid-1990s. The oldest site, installed 

on the Palustris Experimental Forest in central Louisiana, was just measured for its 25th year of 

growth response. This study network, which also encompasses many affiliate studies using 

amelioration or other silvicultural treatments, provides one of the most comprehensive tests of 

the basic questions posed by Stone (1979) available.  

First, when considered across the entire network, which includes forest types such as 

southern pine and mixed pine-hardwood in the South, aspen (Populus tremuloides Michx.) and 

black spruce (Picea mariana (Mill.) Britton, Sterns, & Poggenb.) in the northern U.S. and 

Ontario, mixed conifers in California, Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) in the 

Rocky Mountains and in the Pacific Northwest, and various conifers and aspen throughout 

British Columbia, productivity is little affected by nutrient and organic matter removals through 

the first 10 years [48]. Most of these data are from stands that have not yet reached canopy 

closure and thus maximum nutrient stress, but data from the oldest stands on fairly infertile sites 

indicate similar resilience . By age 15, the 13 sites in the southeastern U.S. had all been at 

canopy closure for several years, yet productivity was reduced by whole-tree harvesting only on 
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the most infertile sites [49]. Similarly, jack pine (Pinus banksiana Lamb.) growth was not 

reduced after across 9 sites following whole-tree harvesting [50]. 

Second, soil porosity reductions (compaction) have decidedly mixed effects on 

productivity. In most cases, compaction has had little to no significant impact on early survival or 

productivity [48]. In contrast, a few soils with clayey soil textures have reported declines in 

young tree growth due to compaction [51] while productivity increased on loamy and coarse-

textured soils after compaction due to improvements in water holding capacity or other physical 

attributes [48]. Compaction effects across a range of textures in southern pine sites resulted in 

increased tree productivity due to a reduction in competing vegetation [49].  

Plant diversity has had little impact on soil productivity, and treatments have had varying 

impacts on plant diversity. Monocultures, especially conifer monocultures, have reductions[FS4] 

in soil productivity. These concerns were initiated by the German “Spruce sickness” of the late 

1800s [45] in which soil porosity and productivity declined following the planting of spruce 

monocultures in lowland clay soils where beech was previously growing. Similar concerns were 

associated with the decline of second-rotation pine stands in Australia and the southeastern 

U.S. [32,52]. As such, one aspect of many of the LTSP locations was the inclusion of a split-plot 

treatment in which the non-crop trees and competing vegetation were controlled manually or 

with herbicides. Overwhelmingly, crop tree biomass was greater where competing vegetation 

was controlled through 10 years across all forest types, and total stand biomass was greater on 

all but a few sites naturally dominated by shrub biomass at early stages of stand development 

[48]. At this early stage, no negative soil impacts have been reported due to creating 

monocultures at any sites. In addition, several investigators have been exploring questions 

related to how the organic matter and compaction treatments might affect plant diversity as well 

as how plant diversity may be affecting measures of soil quality and forest health. Across the 

southeastern U.S., understory plant diversity in loblolly pine plantations was not affected by 

either compaction nor whole-tree harvesting at age 15 years [49], but some species were 



 

 

positively or negatively affected by the more intense disturbances [53,54]. Those positively 

affected were generally early-successional shrubs, while those negatively affected were later-

successional tree species. Across several black spruce sites in Ontario, the impact of harvest 

intensity on diversity depended on soil type; diversity increased on loamy soils with whole-tree 

harvesting while it decreased on peat soils due to warmer microclimates where slash was lower 

[55]. In the aspen forests of the north-central U.S., harvesting intensity has had no impact on 

plant diversity through 17 years but compaction has increased diversity by increasing early 

successional and invasive species while reducing forest ground flora [56].  

That these treatments, which included the complete removal of all aboveground organic 

matter and nutrients, failed to induce widespread losses in tree productivity is a clear indication 

of the resistance and resilience that healthy, managed forests maintain. However, 15 years is 

still quite young relative to most rotation ages, and forest soils research is replete with long-term 

studies contradicting early results and vice versa. Furthermore, while these descriptive results 

are paramount to assessing the relative importance of management actions on soil productivity, 

the LTSP and affiliated studies have also provided an exceptional design for process-level 

testing. The combination of descriptive and process-level testing will help answer the question 

“what will happen in the future under a given set of management and environmental 

conditions”[57]. Process-level work that has been incorporated into the LTSP design includes 

studies that evaluate changes to decomposition rates and soil biology, and attempts to explain 

plant responses to soil compaction using mechanistic-based models and process-level studies 

on soil fertility.  

A number of investigators have studied the impacts of intensive harvesting on microbial 

community properties, processes, and ecology using a variety of techniques. Overwhelmingly, 

these studies have shown the effects of harvesting have stronger initial and long-term impacts 

than any particular treatment. The majority of studies through the first five years post-harvest 

indicate few substantial changes in microbial structure due to compaction or organic matter 
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removal treatments [58–64]. More recent studies in British Columbia show a long-lasting 

reduction in fungal communities and genes associated with decomposition in response to both 

compaction and forest floor removal [65,66]. Similarly, microbial population size and activity has 

shown mixed effects in response to compaction and organic matter removal, with the majority of 

studies finding few consistent or long-term responses [67–73]. One notable exception is a study 

from a loblolly pine forest in Texas which showed long-term (>15 yrs) reduced microbial C and 

N in plots where forest floor was removed [74]. 

In addition to these examples of microbial communities and microbially-mediated 

nutrient transformations, additional research has been conducted on mesofauna, primarily 

earthworms, Collembola and Acari to understand organic matter turnover and natural 

compaction amelioration. Organic matter removal reduced Collembola in some coastal plain 

loblolly pine forests [75] and subboreal spruce forests [76] and altered mite populations and 

diversity [76] following treatment. In another loblolly pine forest, however, Collembola and Acari 

had similar abundance within two years following organic matter removal treatments[77]. 

Compaction, however, had comparatively little impact on Collembola and Acari. The opposite 

occurred for earthworms in a central U.S. pine-hardwood forest; compaction reduced earthworm 

density while organic matter removal slowed rates of recovery [78–80]. Earthworms, as 

expected, proved to be an important mechanism for ameliorating compaction [81].  

Several investigators have studied the impact of compaction on root growth directly and 

related this to soil type, tree species, and water availability. In California, [51,82] examined the 

relative impact of soil texture on water availability and the resulting impact on tree water stress 

and growth, and found that compaction improved water availability on coarse-textured soils but 

reduced it on fine-textured soils. [83] modeled root growth as a function of gradients in bulk 

density and soil water content for three tree species and four soil types, and found the 

responses were predictably soil- and species-specific yet followed principles of the Least-

Limiting Water Range[84]. [85] and [86] used similar greenhouse approaches to study lodgepole 



 

 

pine and loblolly and longleaf pine responses, respectively. Lodgepole pine was more 

influenced by water content at the range of bulk densities expected in field conditions (Bouin et 

al., 2004), while longleaf pine root growth was more sensitive to both bulk density and water 

content than loblolly pine (Scott and Burger, 2013). These process-level studies on root growth 

were confirmed by a study of mid-rotation loblolly pine in North Carolina which showed no 

aboveground growth response to soil compaction, but root growth, especially tap root growth, 

was significantly reduced [87]. 

Overwhelmingly, responses in microbial properties and activity, nutrient transformations, 

root growth capacity, and tree growth to reductions in soil porosity and site organic matter have 

been relatively minor across the wide variety of soils and ecosystems studied. Longer-term 

monitoring and continued process-level studies are needed to help understand how to identify 

and manage the few site types sensitive to these disturbances. Biomass markets need not 

result in only negative impacts, though. Some biomass products can themselves be used to 

improve soil productivity.  

Biochar 

Forest restoration, bioenergy production, or rehabilitation treatments involve forest 

thinning that can produce 40-60 million dry metric tons of woody biomass per year [88]. 

However this can be costly [89,90]. Using in-woods processing to create chips [7], slash 

forwarding to recover previously discarded material [91], or mobile pyrolysis (i.e., 

thermochemical conversion of wood) [92] may all be used to decrease costs. The use of in-

woods fast pyrolysis is also one method to potentially produce a viable byproduct, biochar, from 

‘waste’ wood left on log landings or in slash piles [93,94]. In addition sawmills and other wood 

product facilities produce large quantities of woody biomass in the form of chips, sawdust, bark, 

and wood shavings that could be used to create biochar at centralized bioenergy facilities.  

Biochar is defined as “a solid material obtained from thermochemical conversion of 

biomass in an oxygen-limited environment” [95], and can be analogous to charcoal naturally 
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found in fire-prone ecosystems [96]. Biochar has been tested as a soil amendment in many 

agricultural systems [95,97]; however, there has been considerably less work on biochar in 

forest systems, and in particular few published field trials [98]. In addition to a long residence 

time that results in C sequestration, biochar can improve soil properties by enhancing cation 

exchange capacity, increasing water holding capacity, increasing soil pH as a liming agent, and 

reducing soil bulk density and physical resistance to water and gas flow within the soil matrix 

[99]. All of these properties are thought to play a role in enhancing plant growth and drought 

tolerance in biochar-amended soils [100].  

Production of biochar, coupled with new state, national and international policies that 

promote large-scale biomass utilization [101], could potentially lead to changes in how forest 

soils and stands are sustainably managed [102]. Bioenergy coupled with biochar as a co-

product is a promising alternative for green energy [102] and removal of forest residues can 

improve stand health and reduce the risk of wildfire [103]. The trade-off is that residues also 

serve as essential habitat for wood decay fungi and other organisms [104], provide cover for 

wildlife, reduce soil erosion, and, as mentioned previously, play an important role in soil nutrient 

dynamics and hydrology [105]. Therefore, how much biomass is left or removed should take into 

account multiple management objectives and should be determined on a site-specific basis 

[106,107].  

Although biochar application in forest ecosystems may be logistically more challenging 

than in agricultural systems, forest sites are prime candidates for soil improvement from biochar 

additions [94,108,109]. Biochar manufacture and application has the potential to reduce fire 

risks by removing highly flammable excess woody residues from forest sites, improve soil water 

and nutrient retention, and enhance vegetation growth through improved soil physical or 

chemical properties. In addition, since charcoal is a major component of the fire-adapted 

ecosystems as a result of wildfires or prescribed burns [110], application of biochar is expected 



 

 

to mimic many of the soil properties associated with wildfire-generated charcoal [96,111,112], 

and thus emulate natural disturbance processes [98].  

Biochar can be produced using numerous methods which include traditional kilns and 

earth mounds, as well as engineered systems for slow pyrolysis, fast pyrolysis, flash pyrolysis, 

gasification, and microwave pyrolysis [113,114]. Fast-pyrolysis biochar (involving rapid heating 

rates to peak temperatures) is readily available for field and lab testing and will be the focus of 

the following discussions. In addition to variation in pyrolysis methods, many different 

feedstocks can be used, such as mill residues (sawdust, bark, wood chips), slash, and thinning 

residues. All production methods and feedstocks will result in differences in biochar physical 

and chemical properties; likewise, the same method at a different temperature or residence time 

will yield biochar with differing properties. For example, biochar produced between 400-600 °C 

generally has the least amount of hydrophobicity and highest water holding capacity, while 

those created under higher temperatures have much stronger hydrophobic tendencies 

[115,116]. Table 2 shows examples of the chemical composition of several biochars produced 

from the same equipment (Abri Tech Incorporated, Namur, QC) operated by Biochar Products 

in Halfway, OR, USA, with similar residence times (5-7 min) and temperature ranges (388-450 

°C). In particular, the wide range of pH, electrical conductivity (EC), and macro- and 

micronutrients indicate that care should be taken to understand how soil properties might be 

altered after application of a given biochar. 
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Table 2. Selected chemical characteristics, pH, and electrical conductivity (EC) of biochar created from woody feedstocks in 
the western USA. Fast pyrolysis was conducted on each feedstock using the same reactor, feed rate, residence time, and 
temperature range. Mixed conifer consisted of 70% Pseudotsuga menziesii Mirb. Franco, 20% Tsuga heterophylla (Raf.) 
Sarg., and 10% Abies concolor (Gord. & Glend.) Lindl. ex Hilebr. Fire salvage consisted of 60% Pseudotsuga menziesii, 30% 
Tsuga heterophylla, and 10% Abies concolor. Material was salvaged 3 years after fire. Beetle-killed salvage material 
consists of 60% Pinus contorta Douglas ex Loudon and 40% Pseudotsuga menziesii. 

Tree species or species 
mix 

Chemical Element  

 N  C Ca Mg  K P  S Fe Zn pH EC 

 --- wt % --- ---- μg g-1 ---   
Mixed conifer 0.26 89 6700 990 3900 490 120 3900 33 8.1 103 
Fire salvage 0.34 94 8700 1400 4600 730 200 9700 94 7.4 258 
Beetle-killed salvage 0.18 86 5100 930 3400 280 120 13000 86 8.1 90 
Quercus garryana Douglas 
ex Hook 

0.62 87 35000 2300 8600 880 250 13000 65 7.9 180 

Cytisus scoparious (L.) 
Link 

1.10 94 8000 3100 12000 1300 270 6000 91 7.5 235 

Thuja plicata Donn ex 
D.Don 

0.31 92 9800 1300 4300 960 170 10000 65 5.4 789 

Pinus edulis Englem. and 
Juniperus communis L. 

0.50 76 5500 350 1200 200 <75 380 8 6.5 330 

Arbutus menziesii Pursh. 0.21 85 4500 630 1600 240 96 8500 35 4.5 789 
Mean  0.44 88 10413 1375 4950 635 175 8060 59 6.9 347 
Coefficient of variation 69 7 97 66 73 63 39 55 53 19 82 



 

 

 A recent meta-analysis of tree response to biochar application found an average 41% 

increase in biomass [98]. However, forestry studies indicate high variability in their results, with 

individual studies showing positive, negative, or no significant change in vegetative growth 

[117]. This variability arises due to inherent differences in the soil, fertilizer application, the 

nature of the biochar, and differences in responses among plant species.  In the Inland 

Northwest USA, there are several ongoing biochar field trials examining tree growth responses 

to biochar [118,119].  Short-term (1-2 years) changes in diameter increment on two sites 

(Inceptisol and Andisol soils) were not significantly altered by biochar additions, but 5 year 

growth gains after biochar addition were similar to leaving slash [119]. The advantage of using 

biochar is that it is a long-term organic matter addition once it migrates through the forest floor 

[120]; whereas slash will decompose within a short time, depending on climatic regime.  Biochar 

is often applied to the surface (on top of the existing forest floor) to limit soil disturbance and 

maintain nutrient cycling which may be why forest sites have a slower response than agricultural 

sites. 

The potential benefits from adding biochar to forest sites has not been fully researched 

for long-term impacts which examine a range of biochars, soils, and forest types. However, it is 

clear that avoiding atmospheric inputs of GHG from burning slash is critical for reducing climate 

change effects. Field trials in the western USA [119], show that there are no deleterious impacts 

of biochar additions on forest vegetation, although the broader range of effects on invertebrates, 

fungi, bacteria, and other organisms should also be studied. On-site (or near-site) production of 

biochar will facilitate soil applications after bioenergy harvesting. Highly impacted forest areas 

such as skid trails or log landings should be a priority for biochar applications since they have 

the potential for site remediation and ease of access. 

 Summary 

 The capacity of forests to continue supplying a variety of ecosystem services, such as 

timber, water, biodiversity, and carbon capture is fully dependent on the capacity of forest soils 



 

 

to support plant growth. Timber or biomass harvesting, because it alters natural energy, nutrient 

and hydrologic cycles, has the potential to reduce soils’ productive capacity. Harvesting woody 

biomass for various products such as biochar improves the general health and sustainability of 

many forests by reducing stress and susceptibility to insects, pathogens, or wildfire. Biochar 

provides both a useful form of energy from wood while also producing a product similar to that 

produced from natural fire regimes that improves soil productivity. The USDA Forest Service 

and its partners have provided leadership in the research of both, as well as many other forest 

soil-related concerns. 
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