Testing of Norris Thermal Technologies Pilot Scale Torrefier at Big Lagoon, CA

Mark Severy Research Engineer Schatz Energy Research Center Humboldt State University

June 29, 2016

Outline

- 1. Testing Background
- 2. Reactor Temperature Profile
- 3. Results: Torrefied Biomass Characteristics
- 4. Conclusions
- 5. Lessons Learned from Testing

Torrefaction Testing Site

- » Old mill in Big Lagoon, CA
- » July August 2015
- » Tested with multiple feedstocks
- » Feedstocks obtained from nearby forests

Torrefaction Testing Site

- » Test Objectives:
 - » Understand pilot scale unit to inform construction of larger torrefier
 - » Feedstock tolerance
 - » Product characterization
 - » Mass and energy balance

Test Matrix

Tests were conducted with various feedstocks at different residence times and reactor temperatures.

Species	Douglas Fir		Redwood		Tan Oak		Slash	
Comminution	Chipped &		Chipped &		Chipped &		Chipped &	
Method	Screened		Screened		Screened		Screened	
Contaminant	none		none		none		none added	
Moisture Content	4-9%	10-27%	3-9%	18-32%	4-7%	~11%	6-7%	10-15%
Residence Time (min)	3 - 6	8 - 15	6	8	6	8	6	8
Target Temp. (°C)	300	400	300	350	300	400	300	400

Torrefaction Lab Analysis Plan

Biogreen[®] » Torrefaction Partner: Norris Thermal Technologies » Technology: Pilot Scale Pyrolytic Screw » Screw length: ~160 cm Feedstock Syngas Outlet Input Input Air Lock Hopper **Torrefier Reactor** Tsky2 M1 Tsky1 Tsj (M2) Tþ3 Tþ2 Tṗ1 M3 Output Air Lock Product U.S. DEPARTMENT OF

WasteToWisdom.com

Process Instrumentation and Material Flow

Reactor Temperatures versus Time

Reactor temperatures vary with time and position.

Test data for slash feedstock at 7% moisture with 6 minute residence time at 350 °C.

WASTETO

U.S. DEPARTMENT OF

Moisture Content

Product moisture content averaged 1%.

Water Absorptivity

Product absorptivity averaged 30-50% lower than feedstock

Energy Density of Torrefied Biomass

Higher heating value of torrefied biomass varies with residence time, reactor temperature, and species

Variable	Units	Estimate	Standard Error	t	р	Lower Limit 95%	Upper Limit 95%
Douglas Fir	MJ/kg	7.74	2.04	3.80	0.058%	2.96	12.52
Tan Oak	MJ/kg	8.45	1.94	4.36	0.012%	3.90	13.00
Redwood	MJ/kg	9.21	1.87	4.91	0.002%	4.81	13.61
Slash	MJ/kg	8.46	1.97	4.29	0.015%	3.83	13.10
Tsky2	(MJ/kg)/K	0.0333	0.0060	5.58	0.0003%	0.0193	0.0474
Residence Time	(MJ/kg)/min	0.347	0.102	3.39	0.18%	0.107	0.588
Moisture Content	(MJ/kg)/%	4.22	2.28	1.85	7.32%	-1.13	9.58

Yield Rate

Yield rate influenced by reactor temperature and species.

Variable	Units	Estimate	Standard Error	t	р	Lower Limit 95%	Upper Limit 95%
Douglas Fir	_	1.93	0.17	11.45	4.9E-13	1.54	2.33
Tan Oak	-	1.82	0.16	11.36	6.1E-13	1.45	2.20
Redwood	-	1.90	0.16	12.20	9.0E-14	1.53	2.26
Slash	-	1.88	0.16	11.46	4.8E-13	1.49	2.26
Tsky2	1/K	-0.0036	0.0005	-7.26	2.5E-08	-0.0048	-0.0024
Residence Time	1/min	-0.0090	0.0085	-1.06	30%	-0.029	0.011
Moisture Content	1/%	-0.22	0.19	-1.15	26%	-0.66	0.23

Conclusions

» Pilot system can process 120 kg/day with moisture content up to 25%.

- » New system designed to process 16 ton/day.
- » Electrical demand is approximately 1 kWh/kg of feedstock for heating.
 - » New system may have lower specific energy demand due to decreased reactor length to throughput ratio.

Lessons Learned

- » Torrefier intolerant of larger particles
 > 1" due to bridging in the hopper.
 - » Feeding system is redesigned to widen the range of acceptable feedstocks.

» Air locks leaked excess oxygen into the reactor causing combustion.

> » New system includes improved air locks and automated control to maintain neutral pressure in the reactor.

» Temperature control thermocouple was inadvertently electrically heated.

» New system insulates the thermocouple from electrical heating.

Acknowledgements

- » Aaron Norris, Norris Thermal Technologies
- » Chuck Norris, Norris Thermal Technologies
- » Charles Chamberlin, Ph.D., Schatz Energy Research Center

global equipment solutions

