

Development and Optimization of a Northern California Biomass Supply Chain Model

Presented By: Michael Berry, MS, MF, MBA PhD Student, Oregon State University

For more information please visit WasteToWisdom.com

THE PROBLEM

Leftover residues are a business/ operations byproduct. They are currently often burned in forests due to collection, transportation, and market constraints.

A SOLUTION

Waste to Wisdom goal is to help find a way to turn that forest residues into valuable bioenergy and bio-based products.

RESEARCH QUESTION

What is the optimal biomass supply chain system that will maximize net system profit?

OUTLINE

- 1. Project Overview TASK 2.6
- 2. Problem Description & Supply Chain Elements
- 3. Project Integration
- 4. Model Formulation
- 5. Model Methodology
- 6. Key Model Considerations | Constraints
- 7. Example Model Outputs
- 8. Next Steps

Subtask: 2.6: Integration of Biomass Conversion Technologies (BCTs) with landscape level planning and transportation logistics

- 1. DEVELOP landscape prototype model suitable for planning and evaluating biomass conversion pathways.
- 2. INTEGRATE research and models developed by Task Groups 2,3,4.
- **3. TEST** sensitivity of landscape inputs and market assumptions to profit.

LANDSCAPE LEVEL | INVESTOR PERSPECTIVE | DATA INTEGRATION

OVERVIEW: SUPPLY CHAIN PATHWAYS

ER

OVERVIEW: MAIN MODEL INPUTS

- Supporting Equipment

- Operating Conditions & Rules

- Moisture Content

TASK: BUILD & OPTIMIZE A LANDSCAPE MODEL

PROBLEM DESCRIPTION :

Pathways	 Landings (Raw Material) -> Central Landing (Collection Ports) -> BCT (Conversion/ Processing Facility) -> Final Markets 				
Multi-Commodity	Tops Branches Combination				
Multi-Period	60 Monthly Periods (5 Year Planning Horizon)				
Inventory Management	 Inventory potential @ CLX & BCT Facilities (Dynamic Flow – Multi- Echelon) 				
Processing Options	Chip Grind Sort Bale				
Transportation Options	Truck Types/ Capacities Vary				
Moisture Content Feedback	 Variable with time – affects transportation/ production capabilities 				
Plant Scale & Configurations	 Tonnage Capacity Product Suites (6 Configurations Identified) 				
Final Markets	Biochar Briquette Torrified Wood Tops – Post/Fence				

GOAL: MAXIMIZE NPV FOR INVESTOR

U.S. DEPARTMENT OF

TASK AREAS

TA 1: Project Management TA 2: Feedstock Development TA 3: Conversion Technologies

TA 4: Sustainability Analysis

MODEL DEVELOPMENT

THEME: Adaptable to Meet Project Needs, Inputs and Proposed Variations

- 1. Key Concept: Pathways
 - a) Arc Vs. Route Approaches

2. Data Assimilation

- a) Group Coordination & Data Integration
- 3. Decision Variables
 - a) Material Flow (Landing, BCT, Route, Time Period, Product)

ADAPTABLE | LOGICAL | ACCURATE

MODEL FORMULATION : NETWORK APPROACH

ROUTE SPECIFIC COSTS

MATHMATICAL FORMULATION - NOTATION

Notation:

SETS A = Residuals I= Node J= BCT K= Route Taken (Option) T= Time Period P= Product Produced

DECISION VARIABLES:

-X(a,i,j,k,t) -BDT flow of residual a, from LXX i, to BCT j, using route k, in time period t

-Y(a,p,j,t)-BDT of residual a, into product p, from BCT j, in period t

PARAMETERS:

available(i) - Material Available at node i, BDT mci(i)- initial moisture content pvalue(p) – value of product p produced per incoming BDT mcfactor(i,t) - moisture content of material from node i if extracted in period t pdsctfactor(p,t)- time value discount of product p in time period t pbctfactor(p,j)- value discount factor from each bct (proxy for distance to mkt) pinvestment(p,j)= infrastructure investment to make product p at bct j routeinvestment(k,t) = investments to make route k in time t TC(i,k)- Transportation costs from node i taking route k to bct (\$/BDT) CONST(a,p)- Construction costs from node i taking route k (\$/EA) CC(a,p)- Conversion Costs of residual a into product p (\$/BDT) Mobilization(i,k)- Mobilization costs from node i taking route k to bct (\$/EA) PC(i,k)- Processing costs from node i taking route k to bct (\$/BDT) Q(j,t)=bctcapacity(j,t) – Capacity of bct in period t (BDT) Qt=bctcapacity2= Total Capacity of bct during time horizon (BDT) pvalue=value of product, p (\$/BDT)

KEY FACTORS:

- Inventory
- Costs (Mobilization,
- Process, Conversion)
- Moisture Content
- Investments (Plant, Route)
- Plant Estimates

OTHER VALUES:

W(a,p,j,t)- value of residual a, into product p, from bct j, at time period t (function of pvalue,pbctfactor,pdsctfactor) Inv(a,j,t) – inventory levels of residual a, at bct j, in time period t. PIN(p,j)= Binary Value – investment in product p at bct j? KIN (k,t)= Binary Value – investment in route k, in period t?

MATHMATICAL FORMULATION

GOAL: MAX NET PRESENT VALUE (NPV)

MAX:
$$\sum_{a} \sum_{p} \sum_{j} \sum_{t} (W_{apjt} * Y_{apjt}) - \sum_{a} \sum_{i} \sum_{j} \sum_{k} \sum_{t} (C_{aijkt} * X_{aijkt}) - \sum_{k} \sum_{t} (KIN_{kt} * RI_{kt}) - \sum_{p} \sum_{j} (PIN_{pj} * PI_{pj})$$

Subject to:

Inventory levels

$$M * PIN_{pj} \ge \sum_{a} \sum_{t} Y_{apjt}, \forall p \in P, \forall j \in J \qquad PIN(0,1)$$

 $INV_{ajt} = INV_{ajt-1} + \sum \sum X_{aijkt} - \sum Y_{apj}, \forall t \in T, \forall j \in J, \forall a \in A$

Investments

$$M * KIN_{kt} \ge \sum_{i} \sum_{i} \sum_{j} X_{aijkt}, \forall k \in K, \forall t \in T \qquad KIN(0,1)$$

Capacity Considerations $\sum_{a} \sum_{p} Y_{apjt} \leq Q_{jt}$ $\forall j \in J, \forall t \in T$

 $C_{aijkt} = CONST_{ik} + TC_{ik} + PC_{ik} + MOBE_{ik} \quad \forall a \in A, \forall i \in I, \forall j \in J, \forall k \in K, \forall t \in T$ **Main Cost Drivers** $W_{apjt} = pvalue_{p} * pdiscountfactor_{pj} * pbctfactor_{pj} \qquad \forall a \in A, \forall p \in P, \forall j \in J, \forall t \in T$

U.S. DEPARTMENT OF

SOLUTION (OPTIMIZATION)

1. FULL MODEL:

- a) Customizable Metaheuristic-Based Model Formulation
- b) Genetic Algorithm (GA)

2. MODEL VALIDATION:

- a) Small Scale Exact Solution Confirmation Validation
- b) Mixed Integer Programming (MIP)

ADAPTABLE | LOGICAL | ACCURATE

GOAL AND CONSTRAINTS

OPTIMIZATION GOAL	• MAX NET PRESENT VALUE			
CONVERSION FACILITY CONFIGURATION	• (6 EA) Biochar Torrified Wood Briquette BR+ BC BR + TW TWBR			
PLANT SCALE	• (3 EA) 6K-15KBDT/ Year, 15K-30K BDT/ Year, 30K-50K BDT/Year			
MATERIAL HANDLING	Sorted, Routes Available			
EXTRACTION TIMING	Months/Year Available			
MIN MAX MATERIAL FLOW	Biomass Extraction & Conversion Rates			

A Product of Discussion & Collaboration

EXAMPLE MODEL RESULTS

BCT SITE: LYONS, OR

- a) Harvest Schedule Available
- b) Road Network
- c) Existing Cogen Facility

Lyons, OR

Central Landing

50 LXX | 5 CLX | 12 PERIOD | 2 COMMODITY

THIS IS AN EXAMPLE

EXAMPLE MODEL – KEY INPUTS | CONSTRAINTS

OPTIMIZATION GOAL	• MAX NET PRESENT VALUE		
CONVERSION FACILITY TYPE	Biochar & Briquettes		
PLANT SCALE	• 30K-50K BDT/Year		
MATERIAL HANDELING	• SORTED: TOPS= Chip/Burn, BRANCHES = Grind/Burn		
EXTRACTION TIMING	 12 Periods: 6 Months Extraction 		
MIN MAX MATERIAL FLOW	 MAX Extraction = 10k BDT/Mo MIN Conversion = 1.5k BDT/Mo 		

Other Key 'Placeholders'

- a) Revenue: Biochar @ \$1800/BDT, Briquette: \$200/BDT, Top-Mkt @ \$120/BDT (Assumed 15%)
- b) Plant Cost = 7.5 Million

Similar to a Hybrid Scenario '3'

U.S. DEPARTMENT OF

■TOPS ■TOPS-MARKETABLE ■BRANCHES

50 LXX | 5 CLX | 12 PERIOD | 2 COMMODITY

WISDON

THIS IS AN EXAMPLE

EXAMPLE MODEL OUTPUT : MATERIAL FLOW

U.S. DEPARTMENT OF

- TOTALS:

- 30K BDT/YEAR CONVERSION
- Conservation of Flow
- Build Inventory Late (MC)
- **Maintain Production**

EXAMPLE MODEL OUTPUT : CASHFLOWS

CASHFLOWS PER PERIOD \$1,500,000 COSTS REVENUES \$1,000,000 \$500,000 USD \$0 11 0 12 -\$500,000 -\$1,000,000 THIS CASE NPV= (-) -\$1,500,000 PERIOD

WISDOM

U.S. DEPARTMENT OF

EXAMPLE MODEL OUTPUT : COST SUMMARY

Total Costs Summary

■ PLANT CAPEX

PLANT OPEX

PRODUCT CONVERSION

DRYING

BURNING

BALER

TRANSPORT - TOP - MKT

TRANSPORT - BCT

PROCESS

SUPPORT

MOBILIZATION+ CONSTRUCTION

EXAMPLE MODEL OUTPUTS : PATHWAY SELECTION & REVENUES

Mass Flow Per Route

Total Revenue Summary

Final Product Mass Flow

EXAMPLE MODEL OUTPUTS : EXAMPLE SENSITIVITY ANALYSIS

BASELINE NPV=	-6.9%	
SCENERIO	CHANGE	NEW NPV
SCALE	30-50K TO 15-30K	-3.4%
PLANT COST	-66%	0.3%
CONV_COST	-17%	3.7%
BC_REV	22%	5.3%
BR_REV	25%	0.8%
NO_BURN	N/A	-3.5%
	BASELINE NPV= SCENERIO SCALE PLANT COST CONV_COST BC_REV BR_REV NO_BURN	BASELINE NPV= -6.9% SCENERIO CHANGE SCALE 30-50K TO 15-30K PLANT COST -66% CONV_COST -17% BC_REV 22% BR_REV 25% NO_BURN N/A

EXAMPLE: ECONOMIC SUMMARY

	Biochar	Torrified Wood	Briquette	BR + BC	BR+TW	TWBR	
6-15K BDT							
15-30K BDT	SYSTEM NPV						
30-50K BDT							
	6-15K BDT 15-30K BDT 30-50K BDT	Biochar 6-15K BDT 15-30K BDT 30-50K BDT	Biochar Torrified Wood 6-15K BDT 15-30K BDT 30-50K BDT	Biochar Torrified Wood Briquette 6-15K BDT 15-30K BDT 30-50K BDT	Biochar Torrified Wood Briquette BR + BC 6-15K BDT 15-30K BDT SYSTEM NPV 30-50K BDT	Biochar Torrified Wood Briquette BR + BC BR+TW 6-15K BDT 15-30K BDT SYSTEM NPV 30-50K BDT Image: State of the stat	Biochar Torrified Wood Briquette BR + BC BR+TW TWBR 6-15K BDT SYSTEM NPV 30-50K BDT

U.S. DEPARTMENT OF

HIGHLIGHTS THE NEED FOR CONTINUED COLLABORATION

DI ANT CONFICUENTION

NEXT STEPS...

- Continue Model Development & Refinement
- Run W2W Group Scenarios
- Perform Sensitivity Analysis

CONTEXT: INVESTOR PERSPECTIVE

QUESTIONS?

